• Title/Summary/Keyword: 액츄에이터

Search Result 279, Processing Time 0.029 seconds

Design and Implementation of Smart Green House Management System Based on Open Source Hardware (오픈 소스 하드웨어 기반의 스마트 온실관리 시스템 설계 및 구현)

  • Park, Jung-Woong;Choe, Young-Min;Park, Hee-Dong
    • Journal of Digital Convergence
    • /
    • v.14 no.2
    • /
    • pp.259-264
    • /
    • 2016
  • In this paper, we proposed an arduino-based smart green house management system model and implemented it. The proposed system consists of control unit composed of sensors and arduino, agent program controlling the green house, and web applications providing user interfaces. The control unit transmits data of sensors such as temperature, humidity, illuminance, moisture, etc. to the agent program, and then the agent saves the data in its database. In reverse, control data are transmitted from agent program to control unit. Users can monitor sensed data of green houses and control actuators remotely using web. Plus, smart green house management is available by context awareness and autonomous control functions of the proposed system.

Control of throttle actuator system based on time delay control (시간지연제어에 기초한 스로틀액츄에이터 시스템의 제어)

  • Song, Jae-Bok;Byeon, Kyeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2081-2089
    • /
    • 1997
  • Accurate positioning of the throttle valve of a gasoline engine is required to implement various systems such as traction control system(TCS), cruise control system and drive-by-wire system. In this research, position control system has been developed for the throttle actuator system that uses one throttle actuation for small volume and DC servo motor for fast response. In order to drive the DC motor, PWM signal generator and PWM amplifier were built and interfaced to the motor and controller. Also, time delay control(TDC) law has been used as a basic control algorithm. A method of varying the reference model of the TDC according to the size of change in target throttle angle is proposed here. The simulation and experimental results show that both overshoot prevention and fast response are achieved by the TDC technique with this variable reference model.

Vibration Control of a Cantilever Beam Using Thermal Stresses (열응력을 이용한 외팔보의 진동제어)

  • 권태철;이우식
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.123-131
    • /
    • 1994
  • This paper is concerned with a new concept of vibration control in which thermal stresses are utilized. Thermal actuators are used to generate thermal stresses in a vibrating beam. The thermal actuators are found to work successfully as the control means. Especially the proposed control method in this paper can be effectively applied to the large space structures with low natural frequencies rather than to the structures with high natural frequencies. In the process of control design, various control methods including optimal-robust control method are investigated. Through numerical simulations, it is found that the robust-optimal control method can be efficiently with the vibration control of a cantilever beam using thermal stresses.

  • PDF