• Title/Summary/Keyword: 액적토출

Search Result 31, Processing Time 0.031 seconds

High-Speed Inkjet Monitoring Module for Jetting Failure Inspection (잉크액적 토출불량 검출을 위한 고속 잉크젯 모니터링 모듈)

  • Shin, Dong-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1521-1527
    • /
    • 2010
  • Since inkjet printing is being employed in production lines of electronics and display industries, the tack time for inspection of jetting failure has become very important because the throughput of the inkjet printing system can be extended to the maximum limit by adopting a shorter jetting inspection time. The most popular method for inspecting jetting failure involves the use of a linear stage, a high magnification lens, and a charge coupled devicecamera. However, this conventional approach requires approximately 60 s to complete the jetting inspection and might not be suitable for a high-speed reciprocating jetting inspection in endurance tests due to the unwanted mechanical vibration. In this study, a novel concept of an inkjet monitoring module is introduced, which has an overall inspection time of 18 s. For the shorter tack time of jetting inspection, the parameters affecting the tack time are discussed in this paper.

Studies on Fine Metal Droplet Jetting using Piezoelectric Inkjet Head (압전 잉크젯 헤드를 이용한 미세금속액적 토출 연구)

  • Park, Chang-Sung;Kim, Young-Jae;Sim, Won-Chul;Park, Jung-Hoon;Kang, Pil-Joong;Yoo, Young-Seuck;Joung, Jae-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1550-1551
    • /
    • 2007
  • 노즐 직경 $30\;{\mu}$인 MEMS 압전 잉크젯 헤드를 이용하여 Ag 나노 잉크를 PDMS 처리된 PI(Polyimide) 기판 위에 토출하였다. 구동주파수 5 KHz에서 액적부피 1.5 pl, 속도가 약 4.5 m/s인 액적이 토출 되었다. 인쇄된 액적의 크기는 직경 약 $12\;{\mu}m$이었다. 메니스커스의 거동에 맞춘 구동파형의 입력에 의해 새틀라이트 없는 매우 작은 액적을 토출할 수 있었다.

  • PDF

A Numerical Study on the Formation of Droplet in Piezo Inkjet Head (피에조 잉크젯 헤드의 액적 토출 형상의 전산해석)

  • Joo, Young-Cheol;Kim, Nan-Sook
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.828-831
    • /
    • 2011
  • 본 논문에서는 피에조 잉크젯 헤드의 액적 토출 형상에 대해 전산해석을 통하여 연구하였다. 열유체 해석 전용 프로그램인 FLUENT를 이용하여 에틸렌 글리콜이 잉크젯 헤드의 노즐에서 토출될 때의 형상을 전산모사하였다. 노즐 출구에서 메니스커스 변위의 시간에 따른 변화를 직접 측정하여 노즐 입구의 속도분포를 예측하고 이를 해석의 입력 자료로 사용하였다. 측정치와 해석치를 비교한 결과 전산해석이 측정치의 액정 형성 과정을 잘 모사함을 알 수 있었다.

  • PDF

정전기력 잉크젯 미세 패터닝 기술

  • Dang, Hyeon-U;Choe, Gyeong-Hyeon;Kim, Dong-Su
    • 기계와재료
    • /
    • v.22 no.3
    • /
    • pp.22-29
    • /
    • 2010
  • 자원의 고갈과 지구환경오염의 심각성을 인지하는 시각이 늘어남에 따라 산업계에서도 친환경적 기술에 대한 다양한 연구 개발이 이슈가 되고 있다. 정전기력 잉크젯 패터닝 기술 또한 그 예라 할 수 있겠는데, 이는 기존인쇄 기술의 시각적인 표현의 개념을 벗어나 패턴 자체의 기능을 부여함으로써 그 가치를 높이고, 현존하는 각종 미세 패터닝 기술의 다공정성과 환경에 미치는 영향 등의 문제점을 개선 할 수 있는 기술이라 할 수 있겠다. 정전기력 잉크젯 패터닝 기술은 이미 60~70년대부터 연구 개발 되어왔던 정전기력이 유체에 미치는 영향을 제어하여 극소량 미세 액적 토출 및 분무를 이끌어 내는 기술을 기반으로 토출되는 노즐 헤드의 직경 대비 극 미량의 기능성 잉크를 토출하고, 서브마이크론(submicron)급의 패턴 인쇄를 가능케 한다. 본 논문에서는 정전기력 잉크젯 패터닝 공정의 요소기술을 기반으로 프린팅 장비를 설계 및 제작하고, 미세 액적 토출을 위한 수마이크론의 직경을 갖는 노즐 헤드를 개발 및 프린팅 장비에 대응하여 통합 제어 프로그램을 이용한 기판상의 미세 패터닝 실험을 실시하였다. 정전기력 기반 미세 패터닝 실험의 공정 변수를 잉크의 특성, 노즐헤드의 특성, 기판의 특성, 장비의 특성으로 구분지어 공정 시스템의 성능을 검토 및 기능성 잉크의 미세 패터닝을 구현 하였다.

  • PDF

Numerical analysis of liquid flow characteristics according to the design parameters of a bubble jet microactuator (마이크로 엑츄에이터의 설계변수에 따른 유동특성 해석)

  • Ko, Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.605-612
    • /
    • 2016
  • A numerical analysis was performed on the effect of the design parameters of a bubble jet type microactuator on its liquid flow characteristics. The numerical models included the ink flow from the reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of the refilling process. Because the bubble behavior is a very important parameter for the overall actuator performance, the bubble growth and collapse phenomena in an open pool were simulated in the present study. The drop ejection and refill process were numerically predicted for various geometries of the nozzle, chamber, and restrictor of the bubble jet microactuator. The numerical results from varying the design parameters can help with predicting the performance and optimizing the design of a microactuator.

Numerical Simulation of Inkjet Drop Formation in Piezo Inkjet Head (피에조 잉크젯 헤드의 액적 토출 형상 전산해석)

  • Joo, Youngcheol;Park, Sangkug;Kwon, Key-Si
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.641-647
    • /
    • 2016
  • A drop-on-demand inkjet is used widely for various applications. Therefore, it is important to understand the jetting behavior of the drop from the piezo inkjet. In this study, to predict the jetting behavior, VOF (Volume-of-Fluid) simulation techniques were used and compared with the experimental results. The experimentally measured meniscus movement was used as the input data for the simulation. To verify the simulation, the measured jetting behavior of the mixture fluids of ethylene glycol and IPA (isopropyl alcohol), which has a mixing ratio of 50:50, was used. The numerical simulation of the drop formation using various mixture ratios and its comparison with the measured drop formation confirmed that the proposed method can predict the actual jetting. On the other hand, the satellite drop behavior showed slight differences because the small sized droplet is subject to a more aerodynamic effect during flight because the kinetic energy of the satellite droplet is far smaller than that of the main droplet.

Droplet Ejection and Experimental Study on the Application of Industrial Inkjet Printhead (산업용 잉크젯 프린트헤드 액적 토출현상의 실험적 해석)

  • Park, Sung-Jun
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.34-40
    • /
    • 2011
  • In this paper, a hybrid design tool combining one-dimensional(1D) lumped model and three-dimensional computational fluid dynamics(CFD) approach has been developed in order to evaluate the performance of inkjet print head and droplet control process are studied to reduce the deviations between nozzles which affect the size of the printed line for the industrial application of direct writing on printed circuit boards(PCB). 1D lumped model analysis shows that it is useful tool for evaluating performance of an inkjet head by varying the design parameters. The differences in ejected volume and droplet velocity between analytical and experimental result are within 12%. Time sequence of droplet generation is verified by the comparison between 3D analysis result and photographic images acquired by stroboscopic technique. In addition, by applying DPN process, velocity and volume uniformity between nozzles is dramatically improved that the tolerance achieved by the piezoelectric inkjet printhead across the 64 nozzles is 5 to 8%. A printed line pattern is successfully obtained using the fabricated inkjet print head and droplet calibration system.

  • PDF

High-Speed Monitoring Device to Inspect Inkjet Droplets with a Rotating Mirror and Its Measuring Method for Display Applications (잉크젯을 이용한 디스플레이 생산을 위한 회전 미러 방식의 잉크젯 액적 모니터링 장비 및 측정법 연구)

  • Shin, Dong-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.525-532
    • /
    • 2017
  • The development of an inkjet-based manufacturing machine for the production of next-generation displays using organic and quantum-dot light emitting diodes at a low cost has been conducted. To employ inkjet printing in production lines of displays, the development of a high-speed inkjet-monitoring device to verify the reliable droplet jetting status from multiple nozzles is required. In this study, an inkjet monitoring device using a rotatable mirror with rotary and linear ultrasonic motors is developed in place of a conventional, linear reciprocating, motion-based inkjet monitoring device. Its performance is also demonstrated. The measurements of circular patterns with diameters of $10{\mu}m$, $30{\mu}m$, and $50{\mu}m$ are performed with the accuracies of $0.5{\pm}1.0{\mu}m$, $-1.2{\pm}0.3{\mu}m$, and $0.2{\pm}0.5{\mu}m$, respectively, within 17 sec. By optimizing the control program, the takt time can be reduced to as short as 8.6 sec.