• Title/Summary/Keyword: 액상화 평가

Search Result 209, Processing Time 0.03 seconds

Feasibility Study for Revision of Domestic Liquefaction Evaluation Criteria by Analyzing the Liquefaction Phenomenon Caused by the Pohang Earthquake (포항지진 액상화 현상 분석을 통한 국내 액상화 평가 기준의 개정 타당성 검토)

  • Ha, Ik-Soo;Oh, I-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.4
    • /
    • pp.17-30
    • /
    • 2020
  • In this study, liquefaction evaluation was performed by applying liquefaction evaluation criteria commonly applied in Korea and recently revised evaluation criteria to five sites where liquefaction was observed or potential for liquefaction was high during the 2017 Pohang earthquake. The purpose of this study is to examine the validity of the revised domestic liquefaction evaluation criteria by comparing and reviewing the results of the theoretical liquefaction evaluation with the actual liquefaction occurrence at the sites. For the analysis of earthquakes for the evaluation of the liquefaction, the actual Pohang earthquake wave, as well as the waves that was conventionally used in Korea, was used. The magnitude of the peak ground acceleration of analysis earthquake varied from 0.097 g to 0.2713 g. From the analysis results, the validity of the liquefaction evaluation criteria presented in the 2016 Foundation Design Criteria, which has been commonly applied in Korea, was evaluated. From the evaluation results, the improvement of the existing criteria was suggested, and the suitability of revised items of liquefaction evaluation criteria presented in the Seismic Design General established in 2018 was confirmed.

A Study on Liquefaction Assessment of Moderate Earthquake Region concerning Earthquake Magnitude of Korea (국내 지진규모를 고려한 중진 지역에서의 액상화 평가방법에 관한 연구)

  • Kim, Soo-Il;Park, Keun-Bo;Park, Seong-Yong;Seo, Kyung-Bum
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.125-134
    • /
    • 2006
  • Conventional methods for the assessment of liquefaction potential were primary for severe earthquake regions $(M{\geq}7.5)$ such as North America and Japan. In Korea, an earthquake related research has started in 1997, but most contents in the guidelines were still quoted from literature reviews of North America and Japan, which are located in strong earthquake region. Those are not proper in a moderate earthquake regions including Korea. Also the equivalent uniform stress concept (Seed & Idriss, 1971) using regular sinusoidal loading which is used, in a conventional method for the assessment of liquefaction potential, can't reflect correctly the dynamic characteristics of real irregular earthquake motions. In this study, cyclic triaxial tests using irregular earthquake motions are performed with different earthquake magnitudes, relative densities, and fines contents. Assessment of liquefaction potential in moderate earthquake regions is discussed based on various laboratory test results. From the results, screening limits in seismic design were re-investigated and proposed using normalized maximum stress ratios under real irregular earthquake motions. Also from the tests using constant wedge loading and incremental wedge loading, the characteristics of liquefaction resistance of saturated sand under irregular ground motions are investigated.

Liquefaction in Seabeds and Stability of Coastal Structure Foundations (해저지반의 액상화와 해안구조물 기초의 안정성)

  • Kang, Hong-Yoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.143-152
    • /
    • 1998
  • 해안구조물 설치시 기초지반의 안정성 해석을 위한 파랑에 기이한 액상화 메카니즘을 과잉간극수압(excess pore pressure) 현상과 관련하여 논의하였다. 과잉간극수압 발생 메커니즘에 있어서 두 가지 형태, 즉 변동과잉간극수압 (Oscillatory excess pore pressure) 및 잔류과잉간극수압 (Residual excess pore pressure) 각각에 기인한 액상화의 특성을 구명하였다. 또한, 과잉간극수압 및 해저지반의 액상화 가능성에 대한 평가공정을 제시하였는데 이는 모형실험과 현장관측자료에 의해 그 적용성이 검증되었다. 이러한 평가공정(Assessment Procedures)은 투수성 해저/기초 지반의 액상화를 추정하는데 이용될 수 있다. 해안구조물 기초 설계 및 해저 지반의 안정성 평가시 액상화의 가능성 또는 과잉간극수압의 적절한 평가.고려가 무엇보다 중요하다고 사료된다.

  • PDF

Evaluation of Liquefaction Potential for Soil Using Probabilistic Approaches (확률적 접근방법에 의한 지반의 액상화 가능성 평가)

  • Yi, Jin-Hak;Kwon, O-Soon;Park, Woo-Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.313-322
    • /
    • 2006
  • Liquefaction of soil foundation is one of the major seismic damage types for infrastructures. In this paper, deterministic and probabilistic approaches for the evaluation of liquefaction potential are briefly summarized and the risk assessment method is newly proposed using seismic fragility and seismic hazard analyses. Currently the deterministic approach is widely used to evaluate the liquefaction potential in Korea. However, it is very difficult to handle a certain degree of uncertainties in the soil properties such as elastic modulus and resistant capacity by deterministic approach, and the probabilistic approaches are known as more promising. Two types of probabilistic approaches are introduced including (1) the reliability analysis (to obtain probability of failure) for a given design earthquake and (2) the seismic risk analysis of liquefaction for a specific soil for a given service life. The results from different methods show a similar trend, and the liquefaction potential can be more quantitatively evaluated using the new risk analysis method.

Liquifaction Evaluation of Saemangeum Area and the Considerations of Liquifaction Effect to the Foundations of Structures in Near Future (I) (새만금 지역의 액상화 평가 및 향후 구조물 기초 설계시 액상화 영향의 고려방안 (I))

  • Kim, You-Seong;Ko, Hyoung-Woo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.91-100
    • /
    • 2011
  • This study presents the estimation for the possibility of liquefaction according to the liquefaction evaluation methods in Saemangeum reclamation area for tide embankment, Jeollabuk-do, Korea. Liquefaction estimation is performed by cyclic triaxial tests and seismic response analysis using earthquake records of the long- and short-term. This area appears to have greatly potential of liquefaction from the grain-size distribution curve of the dredged and reclaimed soil in the area. Because the liquefaction can occur in this area if the foundations or buried structures are built at a depth within 10m below ground surface, the meticulous care is required in the design of them in the future.

Study on Mapping of Liquefaction Hazared Potential at Port and harbor in Korea (국내 연안지역의 액상화 구역도 작성에 관한 연구)

  • 강규진;박인준;박인준;김수일
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.57-64
    • /
    • 2000
  • 본 연구에서는 항만 및 어항시설의 내진설?준서에서 채택하고 있는 수정 Seed와 Idriss 방법을 이용하여 액상화 평가를 수행하고 액상화 가능지수(liquefaction potential index, LPI)와 등가 액상화 안전율(FE)을 이용하여 액상화 가능성에 대한 구역도를 작성하였다. 이 두결과가 유사한 것으로 나타나 등가 액상화 안전율의 적합성을 확인하였다 국내 연안의 두지역에 대하여 Hachinohe 지진기록과 Ofunato 지진기록을 이용한 액상화 가능성 구역도를 FE를 이용하여 작성한 후 비교한 결과 Hachinohe 지진기록에 의한 액상화 가능성 구역도가 더 과소평가되는 경향을 보이는 것으로 나타났다 또한 FE는 안전율의 형태로 표현되었기 때문에 구역도 작성과 해석에 편의 성을 제공하였다.

  • PDF

Liquefaction Evaluation by One-Dimensional Effective Stress Analysis Using UBC3D-PLM Model (UBC3D-PLM 모델을 이용한 1차원 유효응력해석에 의한 액상화 평가)

  • Jung-Hoe Kim;Hyun-Sik Jin
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.151-167
    • /
    • 2023
  • This study compares the revised method in loose saturated sandy ground where the LNG storage tank will be installed with an evaluation method by one-dimensional effective stress analysis using the UBC3D-PLM model. Various laboratory and field tests were conducted to establish the parameters necessary for evaluation. The revised liquefaction evaluation method using the seismic response analysis result and N value from standard penetration testing evaluated the possibility of liquefaction as high, but assessment using effective stress analysis, which can consider various liquefaction resistance factors, found the site to be somewhat stable against liquefaction. One-dimensional finite element analysis using UBC3D-PLM modeling facilitated easier assessment of stability against liquefaction than the other methods and minimized the area required for reinforcement against liquefaction. In addition, it is expected that two-and three-dimensional numerical analysis considering the foundation of the LNG storage tank can identify the seismic design and behavior when liquefaction occurs.

Soil Depth Information DB Construction Methods for Liquefaction Assessment (액상화 평가를 위한 지층심도DB 구축 방안)

  • Gang, ByeongJu;Hwang, Bumsik;Kim, Hansam;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.39-46
    • /
    • 2019
  • The liquefaction is a phenomenon that the effective stress becomes zero due to the rapidly accumulated excess pore water pressure when a strong load acts on the ground for a short period of time, such as an earthquake or pile driving, resulting in the loss of the shear strength of the ground. Since the Geongju and Pohang earthquake, liquefaction brought increasing domestic attention. This liquefaction can be assessed mainly through the semi-empirical procedures proposed by Seed and Idriss (1982) and the liquefaction risk based on the penetration resistance obtained from borehole DB and SPT. However, the geotechnical information data obtained by the in-situ tests or boring information fundamentally have an issue of the representative of the target area. Therefore, this study sought to construct a ground information database by classifying and reviewing the ground information required for liquefaction assessment, and tried to solve the representative problem of the soil layer that is subject to liquefaction evaluation by performing spatial interpolation using GIS.

Mapping of Liquefaction Potential in Songdo Reclamied Land (송도매립지역의 액상화 구역도 작성)

  • Kim, Sung-Hwan
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.296-304
    • /
    • 2018
  • Purpose: This study was carried out to evaluate the liquefaction potential of the land reclamation area in Incheon by using the ProShake program for long frequency Hachinohe seismic wave and short frequency Ofunato seismic waves to interpret ground response. Method: The interpretation results and the Modified Seed and Idriss method were used to evaluate the liquefaction potential. The liquefaction potential index which proposed by Iwasaki was calculated to be used as a guide line to represent the liquefaction evaluation results at the given location. The equivalent liquefaction factor of safety presented by Kang(1999) was used as a quantitative index to draw up the mapping of liquefaction potential. Results: This paper presents the mapping of liquefaction potential for the Incheon seaside reclamation area using both the liquefaction potential index and the equivalent liquefaction factor of safety. Conclution: As a result, the mapping of liquefaction based on the liquefaction potential index and equivalent liquefaction factor of safety shows similar distribution pattern.

A New Methodology for the Assessment of Liquefaction Potential Based on the Dynamic Characteristics of Soils (II) : Verification (지반의 동적특성에 기초한 액상화 평가법 (II) : 타당성 검토)

  • 최재순;홍우석;박인준;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.101-112
    • /
    • 2002
  • In this study, a new methodology fur the assessment of liquefaction potential is proposed and characteristics of the proposed methodology are verified. The experimental parameter of this methodology, that is, the plastic shear strain trajectory, is compared with the dissipated energy. It is shown that this parameter can express the liquefaction behavior which is generated by excess pore water pressure. This methodology takes advantage of the shear strain time history determined from the site response analysis based on the real time history of earthquake. In this site response analysis, shock type and vibration type records of similar predominant frequency are inputted. The liquefaction safely factors based on the proposed methodology and Korean detailed assessment related to the classical method are calculated from the results of the site response analysis and laboratory dynamic tests. Through this study, it is found that the proposed methodology can not only simulate the liquefaction behavior of saturated soils hut also express the seismic characteristics reasonably : leading type, predominant frequency, maximum acceleration, duration time.