• 제목/요약/키워드: 액막 유동

검색결과 66건 처리시간 0.028초

액체 건조제 냉각장치의 제습기에서 열 및 물질전달 수치해석 (A Numerical Analysis of cleat and Mass Transfer on the Dehumidifier of Liquid Desiccant Cooling System)

  • 고광호;오명도
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1756-1765
    • /
    • 2001
  • The heat and mass transfer process between the falling liquid desiccant(TEG) film and the air in counter flow at the dehumidifier of desiccant cooling system were investigated. The governing equations with appropriate boundary and interfacial conditions describing the physical problems were solved by numerical analysis. As a result, the effects of the design parameters and the outside air conditions on the rates of dehumidification and sensible cooling were discussed. The results of the dehumidification and sensible cooling rates were compared with those of the cross flow at the same conditions.

습식건조제 이용 제습에서의 증발기 성능인자 영향 연구 (Study on the Effect of Performance Factors on the Evaporator Using Liquid Desiccant Falling Flim for Dehumidification)

  • 박문수
    • 설비공학논문집
    • /
    • 제7권3호
    • /
    • pp.512-520
    • /
    • 1995
  • This study investigates the simultanceous heat and mass transfer between a falling desiccant film and air in cross flow at the interface. The application of this work is the optimization of falling film evaporators for use in potential hybrid air conditioning systems. The specific geometry considered is liquid TEG films falling along the vertical cooled surfaces of a channel with air in cross flow. The equations to describe the coupled heat and mass transfer between a falling desiccant film and air in cross flow for a falling film evaporator have been presented and solved numerically. The effects of important design and operating variables on the evaporator performance predicted by the parametric numerical analysis and suggestions for performance improvements of the evaporator are presented.

  • PDF

액적의 액막 충돌에 대한 수치해석 (A Numerical Analysis of a Drop Impact on the Liquid Surface)

  • 이상혁;허남건;손기헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2568-2573
    • /
    • 2008
  • A drop impact on the liquid film/pool generates several phenomena such as the drop floating, bouncing, formation of vortex ring, jetting, bubble entrapment and splashing. These phenomena depend on the impact velocity, the drop size, the drop properties and the liquid film/pool thickness. These parameters can be summarized by four main dimensionless parameters; Weber number, Ohnesorge number, Froude number and non-dimensional film/pool thickness. In the present study, the phenomena of the splashing and bubble entrapment due to the drop impact on the liquid film/pool were numerically investigated by using a Level Set method for the sharp interface tracking of two distinct phases. After the drop impact, the splashing phenomena with the crown formation and spreading were predicted. Under the specific conditions, the bubble entrapment at the base of the collapsing cavity due to the drop impact was also observed. The numerical results were compared to the available experimental data showing good agreements.

  • PDF

층류-파동 액막 유동에 대한 계면 전단응력의 영향 (Effects of interfacial shear stress on laminar-wavy film flow)

  • 김병주;정은수;김정헌
    • 대한기계학회논문집B
    • /
    • 제22권7호
    • /
    • pp.992-1000
    • /
    • 1998
  • In the present study the behavior of laminar-wavy film flowing down a vertical plate was studied analytically. The effects of film Reynolds number and interfacial shear stress on the mean film thickness, wave amplitude, wave length, and wave celerity were analysed. The anayltical results on the periodic-wave falling film showed good agreements with experimental data for Re < 100. As the film Reynolds number increased, mean film thickness, wave amplitude, and wave celerity increased, but wave length decreased. Depending on the direction of interfacial shear stress, the shape of wavy interface was disturbed significantly, especially for the intermediate-wave. As the interfacial shear stress increased, for the periodic-wave film, wave amplitude and wave celerity increased, but mean film thickness and wave length decreased.

Tube-bundle형 열교환기의 액막 유동에 관한 시뮬레이션 (Numerical study on the flow characteristics of horizontal tube bundle)

  • 김필환;최두열;우주식;정효민;정한식;김경석
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1256-1261
    • /
    • 2009
  • Seawater amounts to 70% of the earth and represents a quite unlimited resource for the production of fresh water by desalination processes and for the extraction of dissolved salts present in it. Recently, the falling film evaporation has increased in interest as an efficient method for seawater desalination system. In the desalination system, the flow characteristics of the falling film is very important issue to make highly efficient system. So, this study is taken to investigate numerically the falling film thickness on the inlet Renold Number ranges are 400 to 700. Numerical simulations are performed using FLUENT6.3.26, a commercial CFD code.

  • PDF

수평 냉각관 외부를 흘러내리는 $LiBr-H_2O$ 수용액의 유동 및 열/물질 전달 특성에 관한 실험적 연구 (An Experimental Study on Flow and Heat / Mass Transfer Characteristics of $LiBr-H_2O$ Solution Flowing over a Cooled Horizontal Tube)

  • 설신수;이상용
    • 대한기계학회논문집B
    • /
    • 제24권8호
    • /
    • pp.1085-1096
    • /
    • 2000
  • An experimental study was performed to examine the heat and mass transfer characteristics of $LiBr-H_2O$ solution flowing over a single horizontal tube with the water vapor absorption. Effects of the flow rate and the temperature of the solution at the top of the tube, the absorber pressure and the drainage pattern were considered. The absorption rate depends highly on the absorber pressure at the low flow rate condition while on the solution inlet temperature at the high flow rate condition. Also, when the flow rate is low, the absorption performance with the sheet flow drainage appeared to be higher than that with the dripping/jet drainage. However, at the high flow rate condition, the case became reversed. The liquid film became wavy with the higher absorption rate. The waves were more probable to form with the lower flow rate and temperature of the solution, and with the higher absorber pressure.

원관 주위 유하 액막에 의한 관 외벽에서의 입자 부착에 대한 실험 (An experiment of the particle deposition on a circular cylinder in a laminar flow)

  • 정종수;이윤표;정기만;박찬우
    • 설비공학논문집
    • /
    • 제12권2호
    • /
    • pp.113-119
    • /
    • 2000
  • An experimental study has been carried out in order to investigate on a particle deposition on a circular cylinder surface. The present study is focused on the particulate fouling occurring in a heat exchanger for a seawater desalinization, in a laminar flow over circular cylindrical tubes. The objective is to investigate how NaCl concentration influences the $SiO2$ particle deposition on the surface of a glass circular cylinder. The NaCl concentration was changed from 0 g/L to 40 g/L. As the experimental results of $SiO2$ particle which is deposited on the glass circular cylinder surface showed, particle deposition rate per unit time increases rapidly with the increase of NaCl concentration between 0 g/L and 15 g/L. After the maximum of particle deposition rate was found at the NaCl concentration of 15 g/L, particle deposition rate remains unchanged or decreases gradually with the NaCl concentration from 15 g/L to 40 g/L. Also the $SiO2$ deposition rate of particles does not have serious variations with the position at present glass surface.

  • PDF

소형로켓엔진에 적용된 스월 동축형 인젝터의 형상변수와 기체-액체 운동량 플럭스 비에 따른 분무특성 (Spray Characteristics According to the Variation of Design Parameters and Gas-liquid Momentum-flux Ratio in a Swirl-coaxial Injector Applied to Small Rocket Engine)

  • 안현종;강윤형;김정수
    • 한국추진공학회지
    • /
    • 제27권1호
    • /
    • pp.27-36
    • /
    • 2023
  • 소형로켓엔진에 적용되는 기체-액체 스월 동축형 인젝터의 분무성능을 파악하고자 형상변수와 추진제의 공급조건을 변화시켜 수류시험을 수행하였다. 인젝터의 형상변수인 스월 챔버의 직경 및 수축부의 각이 증가할수록 스월 강도가 증대되어 분무성능이 향상되었다. 또한, 기체-액체의 운동량 플럭스 비가 증가함에 따라 기체 유동이 액적 일부를 분무액막에서 이탈시켜, 분무시트의 중심부에서 gas-droplet mixture core가 형성되었다.

슬러그 2상유동에서 전류형식 전자기유량계 수치적 신호예측 및 보정 (Numerical Signal Prediction and Calibration Using the Theory of a Current-Type Electromagnetic Flowmeter for Two-Phase Slug Flow)

  • 안예찬;오병도;김종록;김무환;강덕홍
    • 대한기계학회논문집B
    • /
    • 제29권6호
    • /
    • pp.671-686
    • /
    • 2005
  • The transient nature and complex geometries of two-phase gas-liquid flows cause fundamental difficulties when measuring flow velocity using an electromagnetic flowmeter. Recently, a current-sensing flowmeter was introduced to obtain measurements with high temporal resolution (Ahn et al.). In this study, current-sensing flowmeter theory was applied to measure the fast velocity transients in slug flows. The velocity fields of axisymmetric gas-liquid slug flow in a vertical pipe were obtained using Volume-of-Fluid (VOF) method, and the virtual potential distributions for the electrodes of finite size were also computed using the finite volume method for simulating slug flow. The output signal prediction for slug flow was carried out from the velocity and virtual potential (or weight function) fields. The flowmeter was numerically calibrated to obtain the cross-sectional liquid mean velocity at an electrode plane from the predicted output signal. Two calibration parameters are proposed for this procedure: a flow pattern coefficient and a localization parameter. The flow pattern coefficient was defined by the ratio of the liquid resistance between the electrodes for two-phase flow with respect to that for single-phase flow, and the localization parameter was introduced to avoid errors in the flowmeter readings caused by liquid acceleration or deceleration around the electrodes. These parameters were also calculated from the computed velocity and virtual potential fields. The results can be used to obtain the liquid mean velocity from the slug flow signal measured by a current-sensing flowmeter.

MPI Dual Injection 엔진의 온도 조건 변화에 따른 엔진 내부 유동 및 연료 거동 특성에 관한 연구 (Characteristics of the In-cylinder Flow and Fuel Behavior with Respect to Engine Temperature Condition in the MPI Dual Injection Engine)

  • 이승엽;정진택;박영준;유철호;김우태
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.210-219
    • /
    • 2014
  • The MPI dual injection engine can enhance the fuel efficiency and engine power. By using one injector per one intake port, MPI dual injection engine has an excellent fuel atomization and targeting injection. As the basic research for the MPI Dual injection engine design, this research was investigated in order to understand the characteristic of the in-cylinder flow and fuel behavior according to engine temperature condition and the fuel type in the MPI dual injection engines. The 3D unsteady CFD simulation for the MPI Dual injection engine was performed using STAR-CD. The engine operating condition was 2,000 rpm/WOT. The parameters for this study were fuel types, fuel temperatures and wall temperatures. As a result, the intake air amount, evaporated fuel in the cylinder and the fuel film on the wall were presented according to parameters that depend on the fuel properties and engine wall temperature. Also, the results were influenced by in-cylinder flow such as the intake flow, back flow and so on.