• Title/Summary/Keyword: 압출 알루미늄판재

Search Result 9, Processing Time 0.02 seconds

Investigation of Cracking Condition during Press Forming of Extruded Aluminum Sheets (알루미늄 압출판재의 프레스성형 중 파열조건에 대한 조사)

  • Chu, Seok Jae;Park, Chang Gu;Cho, Eun Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.251-258
    • /
    • 2014
  • Sunroof tracks are manufactured by press-forming extruded aluminum sheets. During press forming, cracking occurs along the sharply bent edge. The final positions of the punch and die were measured on the section, and their relation to cracking was investigated. Finite element simulation of bending to the final position was done to find the critical strains. Three-point bending tests with different material orientations, hardnesses, bending edge lengths, and bending radii were carried out in the laboratory, and finite element simulation of the three-point bending tests was performed to find the critical strains.

Weight Reducing of Aluminum Extrusion Profiles of a Railway-Car Body Based on Topology and Size Optimization (알루미늄 압출재로 이루어진 철도차량 차체의 경량화를 위한 최적설계 방안 연구)

  • Han, Soon-Woo;Jung, Hyun-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.213-221
    • /
    • 2011
  • In this study, we discussed the weight reducing of a urban railway-car body, in particular, of the Korean EMU, by optimizing topology and size of aluminum extrusion profiles. The heaviest parts of aluminum railway-car bodies, i.e., the base plate of underframe and side panels of side frame composed of double skin structures are considered for optimization. Topology optimization process is applied to obtain get an optimized rib structure for the base plate. The thickness of ribs and plates of the topologically optimized base plate and the existing side panel are also optimized by employing the size optimization process. The results are verified by comparing the maximum von Mises stresses and maximum deformation in the case of the existing design with those in the case of the optimized design. It is shown that the weight of a base plate and side panel can be reduced by 12% and that the weight of the whole car body can be reduced by 8.5%.

Process and Die Design of Square Cup Drawing for Wall Thickening (사각형 판재성형 시 벽두께 증육을 위한 금형 및 공정 설계)

  • Kim, Jinho;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5789-5794
    • /
    • 2015
  • Recently, thin and light-weight production technologies are needed in IT industry in accordance with increase of the smart phones and mobile PC products. In order to make light and high rigidity products, engineering plastic and aluminum materials are frequently used in products appearance and frame hat support structure. Especially aluminum extrusion and CNC Brick processes are widely used for high strength and high rigidity technology. But extrusion method has constraints to apply exterior design and CNC Brick process has relatively high production cost and low speed of manufacturing. In this research, a new process method is introduced in order to reduce material cost and to improve manufacturing speed dramatically. Plate forging process means basically that thickening of local wall area thickness after deform exterior shape by deep drawing and bending process. Therefore, it is possible to minimize the waste of material and the manufacturing time. In this study the process of plate forging is designed using finite element program AFDEX-2D and the thickness and the width of initial deformed blank. And it is verified as a sample which is a part of laptop developed through the proposed plate forging method.

Forging Process Design of Self-Piercing Rivet for Joining dissimilar Sheet Metals (이종재료 접합을 위한 Self-Piercing Rivet의 단조공정설계)

  • Kim, Dong-Bum;Lee, Mun-Yong;Park, Byung-Joon;Park, Jong-Kweon;Cho, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.802-807
    • /
    • 2012
  • Self-piercing rivet is sheet joining method. It is being used more to join aluminum alloy sheets. Self-piercing riveting is a large-deformation process that involves piercing. The self-piercing rivet, under the press from the punch, pierces the top sheet and forms a mechanical interlock with the bottom sheet. In this study, forging process was designed for manufacturing self-piercing rivet. The forging process has been simulated by using commercial FEM code DEFORM-2D. In simulation of forging process for manufacturing rivet, process sequence, formability, forging load, and distributions of stress and strain were investigated. The suitable forging process could be designed by comparisons of simulation results. The developed process consists of four stages: upsetting, first chamfering, back extrusion, and second chamfering. The simulated results for forging process were confirmed by experimental trials with the same conditions.

Advanced Aluminum Welding Technologies for Productivity Improvement (생산성 향상을 위한 신개념 알루미늄 용접 방법)

  • Cho, Yong-Joon;Lee, So-Young;Chang, In-Sung;Do, Sung-Sup
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.19-19
    • /
    • 2009
  • 최근, 유한한 에너지 자원의 한계와 지구 온난화 등으로 세계의 제조 산업은 새로운 국면을 맞이하고 있으며, 특히, 자동차 산업은 화석연료를 주 에너지원으로 사용한다는 점과 이 연료를 연소시킬 때 발생하는 이산화탄소가 지구 온난화의 주된 원인이 될 수 있다는 점에서 상기 문제들을 해결하기 위한 다양한 방법에 주목하고 있다. 그 중에서 자동차의 생산기술 측면에서 볼 때, 가장 중요한 이슈는 차체 경량화다. 자동차 차체는 자동차를 구성하고 있는 여러 가지 부품 중에서 약 40% 정도의 무게 비율을 차지하고 있기 때문에, 차체 경량화는 연비향상과 이산화탄소 배출가스 감소와 직접적인 관계를 가지고 있다. 다양한 차체 경량화 방법 중에서 가장 쉽게 접근할 수 있는 방법이 경량소재 적용에 의한 경량화 방법이다. 현재, 탄소섬유 강화 플라스틱과 같이 무게 절감 비율을 최대화 할 수 있는 소재들도 개발되어 일부 적용되고 있지만, 일반적으로 차체 경량화 소재로 가장 널리 사용되고 있는 소재는 알루미늄 합금이며, 이에 대한 차체 적용 비율이 점차로 높아지는 추세에 있다. 이에, 본 연구에서는 알루미늄 합금이 차체에 적용되었을 때의 장단점을 살펴보고, 알루미늄 합금을 적용한 차체 생산과정에서 유의해야 될 사항들과 이를 바탕으로 하는 생산성 극대화 방안에 대하여 고찰하였다. 먼저, 기존의 알루미늄 저항 점 용접공법의 단점을 최소화하고 대량생산 체계에 적합하도록 개발된 새로운 개념의 저항 점 용접 시스템에 대해 그 성능과 양산성을 검증하였다. 구리 전극과 알루미늄 피용접물 사이에 프로세스 테이프를 삽입하여 용접하는 이 시스템은 열전도성이 큰 알루미늄 용접부에서 저전류의 조건에서도 효과적으로 균일한 발열현상이 발생하게 하였으며, 전극 팁 드레싱 없이 모든 용접점이 항상 동일한 조건에서 용접이 이루어질 수 있도록 하였다. 용접 조건 설정에 있어서도 용접전류가 통전되는 순간에 전극 가압력을 자유로이 변형시켜 용접부 크랙 발생을 최소화할 수 있음을 확인하였다. 알루미늄의 또 다른 대표적인 접합방법인 아크용접에 있어서는 용접 입열량을 조절하여 용접변형을 최소화 할 수 있는 아크용접 시스템에 대해 양산성과 적용 타당성을 검토하였다. 와이어 송급 방향을 자유자재로 바꿀 수 있는 이 시스템의 특성에 의해 스패터를 최소화하면서 용융금속이 효과적으로 모재에 금속이행 될 수 있음을 확인하였으며, 판재, 압출재, 및 다이캐스팅재 등 다양한 차체 소재에 대한 용접 가능성 및 미그-레이저 하이브리드 용접과의 비교분석을 통하여 차체 박판 용접에서도 최소의 열변형으로 효과적으로 사용될 수 있음을 보였다.

  • PDF

A Study on Welding Strength of Extru-Riveting Process of Aluminum Plates (알루미늄 판재의 압출점접합공정에 있어서 접합강도에 관한 연구)

  • Lee, J.H.;Kim, T.H.;Lee, M.Y.;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.460-467
    • /
    • 2010
  • It was studied that two plates of aluminum can be welded by extru-riveting experiments with extru-rivet welding dies, and that the welding strength and metal flow on the welding section were analyzed by computer simulation according to the welding variable such as the diameter of extrusion insert dies. It was known by computer simulation that welding strength on the welding section of plates could be influenced by the diameter of extrusion insert dies. And it was known by experiments that two plates of aluminum can be welded on a spot point on aluminum plate by extru-rivet welding process, and that welding strength is higher and higher if the diameter of extrusion insert die is smaller and smaller, and that welding strength is the highest when diameter of extrusion insert dies is ${\emptyset}4.2$mm in the case that the diameter of rivet is 5 mm, when aluminum 5052 two plates with 1.5 mm thickness and one plate with 3mm thickness for rivet plate are used as welding material.

A Study on Extru-Shear Welding(ESW) Process of Aluminum Plates (알루미늄 판재의 압출전단접합에 관한 연구)

  • Lee, K.K.;Lee, M.Y.;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.452-459
    • /
    • 2010
  • It was investigated that two plates of aluminum can be welded by hot extru-shear welding process with extru-shear welding dies, and that the welding strength and metal flow on the welding section were analyzed by computer simulation according to the welding variables such as inclined angle of cutter and overlapped length of plates and temperature of plates. It was known by computer simulation that welding strength on the welding section of plates could be influenced by the inclined angle of cutter and overlapped length of plates and temperature of plates. And it was known by experiments that two plates of aluminum can be welded on the end sections by hot extru-shear welding process using extru-shear welding dies, and that welding strength is the highest when inclined angle of dies is $70^{\circ}$, and overlapped length is 1.2 mm, and temperature is $520^{\circ}$, when aluminum 5052 two plates with 1.6 mm thickness are used as welding material.

A Study on the Effect of Pin Height on Weld Strength in Extru-Rivet Spot Welding of Aluminum Plates (알루미늄 판재의 전기저항가열 압출점접합공정에 있어서 핀의 높이가 접합강도에 미치는 영향에 관한 연구)

  • Lee, S.J.;Kim, T.H.;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.23 no.5
    • /
    • pp.282-288
    • /
    • 2014
  • It is difficult to control welding variables during spot welding of non-ferrous metals like aluminum because of the low electrical resistance of the material. It has been suggested that a solid state welding process such as friction stir spot welding or extru-spot welding can be used to spot weld aluminum plates. In the extru-spot welding, there is a need to increase the weld strength by improving the shape of the welding die. The current study shows that the weld strength for an extru-spot welding can be increased by using a pin placed on the inside of the upper electrode in the welding die. In the current study, the deformed shape of the insert rivet and the stress distribution in the welding zone were analyzed by simulation. Extru-rivet spot welding experiments were performed by changing the height of pin on the inside of the upper electrode. From the experimental result, it is shown that the weld strength for an extru-rivet spot welding can be increased by adjusting the height of the pin. The optimal shape of the deformed rivet after the extru-rivet spot welding can be observed from the simulation results. The deformed shape of the insert rivet can also be controlled by the height of pin.

Evaluation on Tensile Characteristics of Extruded Aluminum Panel Joints by Friction Stir Welding Parameters (마찰교반 용접변수에 따른 알루미늄 압출판재의 인장특성 평가)

  • Lim, Byung-Chul;Kim, Young-Moon;Kim, Won-Seop;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.614-618
    • /
    • 2018
  • The changes in the mechanical properties according to the width of the tool shoulder, rotation speed and moving speed in friction stir welding (FSW) are evaluated using Al 6061-T6. The results indicated that the tensile strength value increases with increasing rotation speed. The higher the moving speed of the tool shoulder, the lower the tensile strength, regardless of the tool type. A higher tensile strength value was generally obtained with a tool shoulder diameter of 12mm (TSD12) than with 8mm. When the moving and rotation speeds exceed a limiting value, a stabilization stage is reached, in which (the tool shoulder diameter?) no longer affects the material properties. At a tool shoulder diameter of 8mm (TSD8), the material properties are decreased and the mixture of material in the welding area is incomplete in comparison with the tool type of TSD12. The tensile strength value is decreased at a rotation speed of 1500 rpm. As a result, a rotation speed higher than the threshold value is needed in order for and the transition temperature to be reached, which allows the complete mixing of the material in the welding area.