• Title/Summary/Keyword: 압축시험

Search Result 2,624, Processing Time 0.029 seconds

A Study on Unconfined Compressive Strength of CLSM with Paper Sludge Ash (제지애쉬가 적용된 CLSM의 일축압축강도 특성에 관한 연구)

  • Park, Jeong-Jun;Lee, In-Hwan;Shin, Eun-Chul;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.253-262
    • /
    • 2019
  • This paper described the evaluation results on unconfined compressive strength characteristics of CLSM with paper sludge ash, in order to develop a CLSM that can prevent sewer pipe damage. The flowability test and the unconfined compressive strength test were performed according to mix design condition of CLSM. The flowability test result showed that the water content, which can satisfy the flowability criteria, was 24% to 32% according to the mix design condition. The results of unconfined compressive strength test showed that the strength incremental ratio was high between 1 and 7 days of curing time, and the strength at this time was more than about 50% of the strength at 28 days of curing time. The strength of CLSM was greatly influenced by fly ash. However, it was analyzed that the mixture of paper sludge ash is required when the reference strength of CLSM is considered. Although the strength of the high cement ratio was higher than that of the low cement, a cement ratio of 5% would be a reasonable mix design condition of CLSM.

A Study on the Experimental Relationship between KS CBR and Elastic Modulus from Consolidated Undrained Triaxial Tests (CBR과 압밀 비배수 시험에 의한 탄성계수와의 상관관계에 대한 실험적 연구)

  • Kim, Su-Il;Lee, Gwang-Ho;Gwon, Mu-Seong
    • Geotechnical Engineering
    • /
    • v.7 no.4
    • /
    • pp.25-34
    • /
    • 1991
  • In this study, relationships between CBR values tested by Korean Standards (KS CBR) and the elastic moduli from CU compression tests are developed for the subgrade soils. Triaxial compression and KS CBR tests are carried out on five types of samples from 15 points in Korean ezpressways. Triaxial compression tests are performed under 3 types of coifining pressures to generalize the CBR -elastic modulus relationship as functions of confining pressured and mean principal stresses. From the regression analyses of experimental results, equations for relationships between the KS CBR and elastic moduli of roadbed Boils are proposed. An equation for the relation- ship between the KS CBR and the maximum dry density of roadbed soil is also proposed.

  • PDF

A Fundamental Study for Beneficial Use of Dredged Material as a Concrete Admixture (항만준설토의 콘크리트 혼합재로의 활용을 위한 기초적 연구)

  • Oh, Hong-Seob;Oh, Kwang-Jin;Lee, Ju-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.132-141
    • /
    • 2010
  • Recently dredged material generation has a tendency to increase since harbor construction are under progress. In this study, an experiment had been carried out which replacement of dredged material of Busan and Ulsan port as concrete mixing material. For this experiment, physical and chemical test of dredged material was carried out, and compressive strength test of mortal specimen with dredged material in scale, as aggregate replacement, was carried out. Compressive strength of Busan and Ulsan was both increased when the ratio of mixing materials was 10%. Compressive strength of Dredged material from Busan with about 70% of mineral silt showed increse when the ratio of aggregate replacement in 30%. In addition, in the result of the ICP test, both dredged materials satisfied the waste's marine discharge treatment and soil contamination concern and measures criterion on that using dredged material as a concrete material can influence on application of concrete positively.

Evaluation of Permeability and Related Soil Characteristics Based on Pore Pressure Measurement during Consolidation by Radial Drainage (방사배수 압밀 중 위치별 간극수압 측정을 통한 투수계수와 관련물성치의 결정방법)

  • Yune, Chan-Young;Chun, Sung-Ho;Chung, Choog-Ki;Lee, Won-Tekg
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.9-17
    • /
    • 2008
  • In this research, an analytical solution for the coefficient of permeability of soils during consolidation is suggested. The pore pressure and the flow rate measurements at different locations during consolidation are utilized. The void ratio and volume compressibility of soils under consolidation are also estimated. A large consolidation testing device, possible in both vertical and radial drainage is designed and manufactured. And consolidation test with kaolinite soils were performed under radially inward drainage direction. Pore pressures in varying radial distances and flow rate with time were measured as well as vertical deformations. From the test results, the changes of permeability, volume compressibility and void ratio under consolidation and their spatial variations are estimated. Thus the proposed solution is verified by comparing with the experimentally estimated test results. In addition, it is confirmed that permeability, void ratio and volume compressibility decrease as consolidation and loading steps progress. Also, these soil characteristics increase with radial distant from drainage boundary, where lowest values observed, and slightly decrease as approaching undrained boundary.

Assessment of Ultrasonic Pulse Velocity Method for Early Detection of Frost Damage in Concrete (콘크리트의 초기동해 진단을 위한 초음파 속도법의 적용 가능성 평가)

  • Moon, Sohee;Lee, Taegyu;Choi, Heesup;Choi, Hyeonggil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.193-202
    • /
    • 2024
  • This research delves into the evaluation of the suitability of ultrasonic pulse velocity as a diagnostic tool for early detection of frost damage in concrete. The investigation involves the measurement of compressive strength and ultrasonic pulse velocity concerning the depth of freezing for individual mortar specimens, followed by an analysis of their microstructure and their interrelation. The findings indicate a consistent decrease in both compressive strength and ultrasonic pulse velocity with increasing freezing depth. Furthermore, a correlation between compressive strength and ultrasonic pulse velocity concerning the depth of early frost damage is established. Consequently, the study asserts the potential of utilizing the ultrasonic pulse velocity method for early detection of frost damage in concrete, with prospects for quantifying the depth of damage through further research endeavors.

Evaluation of Compression Index for Natural Clay Using the Compression Characteristic of Reconstituted Clay (재성형점토의 압축특성을 이용한 자연점토의 압축지수 추정)

  • Hong, Sung-Jin;Kim, Dong-Hee;Lee, Moon-Joo;Jie, Hong-Keun;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.5-13
    • /
    • 2013
  • The compression index, representing the compressibility of clay, is generally obtained from the consolidation test, or predicted by empirical correlations using soil properties. However, empirical methods have regional limitations, because the compression index is affected not only by soil properties but also by site characteristics, such as deposition conditions and stress history. In this study, a method evaluating the compression index from typical soil properties is suggested using the characteristics of reconstituted clay. By analyzing the consolidation test results of Busan clay, the suggested method is verified, and the analysis of prediction error is carried out. It is shown that the proposed method evaluates the compression index more accurately than empirical methods previously suggested. The prediction errors occur by assumption, and are inversely proportional to $e_{cross}/e_0$, obviously.

Development of Concrete-Polymer Composite(II) -Physical Properties of Polymer(Resin) Concrete- (콘크리트-폴리머 복합재료 개발(II) -폴리머(레진) 콘크리트의 물성-)

  • Hwang, Eui-Hwan;Hwang, Taek-Sung;Kil, Deog-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1066-1072
    • /
    • 1999
  • The physical properties of polymer concrete were investigated for development of high-performance construction materials. Various specimens of polymer concrete were prepared using unsaturated polyester resin as the polymer-binder with the various dosage of calcium carbonate as microfiller (5~20 wt %) and fine aggregate(10~50 wt %). For the evaluation of the physical properties of polymer concretes, tests such as compressive strength, flexural strength, water absorption test, hot water immersion test, acid resistance test and pore size distribution analysis were conducted. As a result, it is concluded that compressive and flexural strengths of polymer concretes increased up to 4 times than those of conventional cement concrete. Whereas the compressive and flexural strengths of polymer concretes tested after hot water immersion, compared with those of polymer concretes tested before hot water immersion, decreased about 67%, 47%, respectively. By hot water immersion, total pore volume and porosity(%) of polymer concretes were remarkable increased due to decomposition of polymer binder. And also, it is showed that water absorption(%) and weight loss(%) of polymer concrete specimens by acid immersion, compared with those of ordinary portland cement concrete, decreased about 1/100, 1/27, respectively.

  • PDF

Evaluation For Mechanical Properties of High strength Concrete by Stressed Test and Tressed Residual Strength Test (설계하중 사전재하 및 잔존강도 시험방법에 따른 고강도콘크리트의 고온특성평가 -제 1보, 강도특성을 중심으로-)

  • Lee, Tae-Gyu;Kim, Young-Sun;Lee, Eui-Bae;Park, Chan-Gyu;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.869-872
    • /
    • 2008
  • Recently, the effects of high temperature on compressive strength, elastic modulus and strain at peak stress of high strength concrete were experimentally investigated. The present study is aimed to study the effect of elevated temperatures ranging from 20 to $700^{\circ}C$ on the material mechanical properties of high-strength concrete of 40, 60, 80MPa grade. In this study, the types of test were the stressed test and stressed residual test that the specimens are subjected to a 25% of ultimate compressive strength at room temperature and sustained during heating and when target temperature is reached, the specimens are loaded to failure. Or specimens are loaded to failure after 24hour cooling time. tests were conducted at various temperatures ($20{\sim}700^{\circ}C$) for concretes made with W/B ratios 46%, 32% and 25%. Test results showed that the relative values of compressive strength and elastic modulus decreased with increasing compressive strength grade of specimen.

  • PDF

Shear Strength and Compressibility of Oyster Shell-Sand Mixtures for Sand Compaction Pile (SCP공법 적용을 위한 굴패각-모래 혼합토의 전단과 압축특성)

  • Yoon Gil-Lim;Yoon Yeo-Won;Chae Kwang-Seok;Kim Jae-Kwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.17-23
    • /
    • 2004
  • Strength and deformation characteristics of oyster shell-sand mixtures were investigated to utilize waste oyster shell being treated as a waste material. Standard penetration test (SPT) is a common method to obtain in-situ strength in sand. However, in case of oyster shell-sand mixtures, there was no information between SPT N-value and internal friction angle of mixture soils. In this paper SPT experiments from several large scaled model chamber tests and large scaled direct shear tests were carried out with varying unit weight of oyster shell-sand mixtures. Appropriate correlations were in tile study observed among N-value, unit weight and internal friction angle, which make it possible to estimate in-situ strength from SPT and the coefficient of volume compressibility from the confined compression tests to compute the settlement of oyster shell-sand mixtures.

Modelling of Large Triaxial Test with Rockfill Materials by Distinct Element Method (개별요소법에 의한 락필재료의 대형삼축압축시험 모델링)

  • Jeon, Je-Sung;Kim, Ki-Young;Shin, Dong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.111-120
    • /
    • 2006
  • In this research, numerical simulations by PFC considering discrete element method are conducted to predict experimental results of large triaxial compression test with rockfill material for dam construction. For generation of compacted assembly with specific grain size distribution and initial material porosity, the clump logic method and expansion of generated particles are adapted. To predict stress-stain behavior of large triaxial test, discrete particle modelling is applied with micro parameters which are chosen by calibration process. It is expected that distinct particle modelling method could be used as a useful tool to investigate micro and macro behavior associated with geotechnical problems and develop a numerical laboratory.