• 제목/요약/키워드: 압축강도 예측

Search Result 451, Processing Time 0.032 seconds

Compressive strength prediction of concrete using ground granulated blast furnace slag by accelerated testing (촉진양생법에 의한 고로슬래그 미분말 혼합 콘크리트의 압축강도 예측)

  • Kim, Yong Jic;Kim, Young Jin;Choi, Yun Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.91-98
    • /
    • 2009
  • Recently, production cost of ready mixed concrete has been increased due to the rising cost of raw materials such as cement and aggregate etc. cause by the upturn of oil price and increase of shipping charge. The delivery cost of ready mixed concrete companies, however, has been decreased owing to their excessive competition in sale. Consequently, ready mixed concrete companies began to manufacture the concrete by mixing ground granulated blast furnace slag(GGBF) and fly-ash in order to lower the production cost. Therefore, the objective of this study was to predict 28 days strength of GGBF slag concrete by early strength(warm and hot water curing method) for the sake of managing with ease the quality of ready mixed concrete. In experimental results, the prediction equation for 28 days compressive strength of GGBF slag concrete could be produced through the linear regression analysis of early strength and 28 days strength. In order to acquire the reliability, all mixture were repeated as 3 times and each mixture order was carried out by random sampling. The prediction equation for 28 days strength of GGBF slag concrete by 1 day compressive strength(accelerated testing) according to warm and hot water curing method won the good reliability.

  • PDF

Evaluation on Sulfate Attack for Concrete Structures of Nuclear Power Plants (원자력발전소 콘크리트 구조물의 황산염 침식 평가)

  • Lee, Jong-Suk;Moon, Han-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.169-176
    • /
    • 2004
  • The Mechanistic model, considering expansion stress, coefficient of diffusion etc. to time, is applied to predict the deterioration of concrete structures of the nuclear power plant(NPP) due to sulfate attack. Mix design for the test was three kinds of specified compressive strength 385, 280 and $210kgf/cm^2$ which are used to construct NPPs and cement was type I and V. The immersion test was performed with 10% $Na_2SO_4$ solution to cement type and strength for a year. The coefficient of diffusion on each concrete mix is calculated based on the results of immersion test, and it is used for predicting the sulfate attack of the concrete structures of NPP. The coefficient of diffusion of the target concrete ranged $0.5763{\sim}3.9002{\times}10^{-12}m^2/sec.$, and the sulfate attack rate of concrete structures of the NPP was predicted as 0.1~7.1 mm/year.

Suggestion of the Prediction Model for Material Properties and Creep of 60~80MPa Grade High Strength Concrete (설계기준강도 60~80MPa급 고강도콘크리트의 재료 특성 및 크리프 예측모델식 제안)

  • Moon, Hyung-Jae;Koo, Kyung-Mo;Kim, Hong-Seop;Seok, Won-Kyun;Lee, Byeong-Goo;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.517-525
    • /
    • 2018
  • The construction of super tall building which structure is RC and must be certainly considered on column shortening estimation and construction reflected concrete creep has been increased. Regarding the Fck 60~80MPa grade high strength concrete applied in the domestic super tall building project, the mechanical properties and creep deflection according to curing conditions(Drying creep/Basic creep) were reviewed in this research. Results of compressive strength and elastic modulus under sealed curing condition were 5% higher than unsealed condition and difference of results according to the curing condition was increased over time. Autogenous and drying shrinkage tendency showed adversely in the case of high strength concrete. Additionally, creep modulus under unseal curing condition was evaluated 2~3 times higher than sealed condition. Modified model of ACI-209 based on test result was applied to estimate long period shortening of vertical members(such as Core Wall/Mega Column) exactly, it is designed to modify and suggest the optimal creep model based on various data accumulated during construction, in the future.

Bond Behavior of Epoxy Coated Reinforced Concrete (에폭시수지 도막 철근콘크리트의 부착특성 연구)

  • 오병환;엄주용;권지훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.79-84
    • /
    • 1993
  • 철근의 부식은 철근 콘크리트 구조물에 있어서 심각한 열화현상을 유발할 수 있으며 최근 들어 이로 인한 피해가 많이 보고되고 있다. 이와 같은 부식의 억제방안 중 철근에 직접 에폭시를 도막하는 것이 가장 효과적인 것으로 알려져 있다. 그러나 이 경우 에폭시 도막에 따른 부착성능의 저하가 우려되는 바 본 연구는 철근부식방지를 위해 에폭시를 도막한 철근의 부착특성을 고찰하기 위해 수행되었다. 주된 변수는 콘크리트 압축강도, 부착길이, 에폭시 도막두께이며 각 변수별로 부착특성의 변화를 관찰하였고 이를 통해 에폭시도막 철근의 사용성을 검토하였다. 본 실험결과에 기초하여 부착강도 예측식을 제안하였고 실험결과와 예측치를 비교하였다.

  • PDF

Calculating the Uniaxial Compressive Strength of Granite from Gangwon Province using Linear Regression Analysis (선형회귀분석을 적용한 강원도 지역 화강암의 일축압축강도 산정)

  • Lee, Moon-Se;Kim, Man-Il;Baek, Jong-Nam;Han, Bong-Koo
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.361-367
    • /
    • 2011
  • The uniaxial compressive strength (UCS) is an important factor in the design and construction of surface and underground structures. However, the method employed to measure UCS is time consuming and expensive to apply in the field. Therefore, we developed a model to estimate UCS based on a few properties using linear regression analysis, which is a statistical method. To develop the model, valid factors from the test results were selected from a correlation analysis using a statistical program, and the model was formulated by linear regression based on the relationships among factors. UCS estimates derived from the model were compared with the results of UCS tests, to assess the reliability of the model. The relationship between rock properties and UCS indicates that the factors with the greatest influence on UCS are point load strength and shape facto r. The UCS values obtained using the model are in good agreement with the results of the UCS test. Therefore, the developed model may be used to estimate the UCS of rocks in regions with similar conditions to those of the present study area.

A Study on the Prediction of Uniaxial Compressive Strength Classification Using Slurry TBM Data and Random Forest (이수식 TBM 데이터와 랜덤포레스트를 이용한 일축압축강도 분류 예측에 관한 연구)

  • Tae-Ho Kang;Soon-Wook Choi;Chulho Lee;Soo-Ho Chang
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.547-560
    • /
    • 2023
  • Recently, research on predicting ground classification using machine learning techniques, TBM excavation data, and ground data is increasing. In this study, a multi-classification prediction study for uniaxial compressive strength (UCS) was conducted by applying random forest model based on a decision tree among machine learning techniques widely used in various fields to machine data and ground data acquired at three slurry shield TBM sites. For the classification prediction, the training and test data were divided into 7:3, and a grid search including 5-fold cross-validation was used to select the optimal parameter. As a result of classification learning for UCS using a random forest, the accuracy of the multi-classification prediction model was found to be high at both 0.983 and 0.982 in the training set and the test set, respectively. However, due to the imbalance in data distribution between classes, the recall was evaluated low in class 4. It is judged that additional research is needed to increase the amount of measured data of UCS acquired in various sites.

Maturity-Based Model for Concrete Compressive Strength with Different Supplementary Cementitious Materials (혼화재 치환율을 고려한 성숙도 기반의 콘크리트 압축강도 평가 모델)

  • Mun, Jae-Sung;Yang, Keun-Hyeok;Jeon, Yong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.82-89
    • /
    • 2014
  • The purpose of this study is to propose a simple model to evaluate the compressive strength development of concrete with various supplementary cementitious materials (SCMs) and cured under different temperatures. For the generalization of the model, the ACI 209 parabola equation was modified based on the maturity function and then experimental constants A and B and 28-day compressive strength were determined from the regression analysis using a total of 265 data-sets compiled from the available literature. To verify the proposed model, concrete specimens classified into 3 Groups were prepared according to the SCM level as a partial replacement of cement and curing temperature. The analysis of existing data clearly revealed that the 28-day compressive strength decreases when the curing temperature is higher and/or lower than the reference curing temperature ($20^{\circ}C$). Furthermore, test results showed that the compressive strength development of concrete cured under $20^{\circ}C$ until an early age of 3 days was marginally affected by the curing temperature afterward. The proposed model accurately predicts the compressive strength development of concrete tested, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.00 and 0.08, respectively.

Prediction to Shock Absorption Energy of an Aluminum Honeycomb (알루미늄 허니콤의 충격 에너지 흡수 특성 예측)

  • Kim, Hyun-Duk;Lee, Hyuk-Hee;Hwang, Do-Soon;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.391-399
    • /
    • 2011
  • The purpose of this paper is to predict the shock absorbing characteristics of the aluminum honeycomb in a lunar lander. Aluminum honeycomb has been used for shock absorbers of lunar lander due to its characteristics such as light weight, high energy absorption efficiency and applicability under severe space environments. Crush strength of the honeycomb should have strength to endure during shock energy absorbing process. In this paper, the crush strength, which depends on the shape of honeycomb and impact velocity, is estimated using FEM. Ls-dyna is used for finite element analysis of the honeycomb shock absorber. The unit cells of the honeycomb shape are modeled and used for the finite element analysis. Energy absorption characteristics are decided considering several conditions such as impact velocity, foil thickness and branch angle of the honeycomb.