• Title/Summary/Keyword: 압전형 압력센서

Search Result 9, Processing Time 0.03 seconds

A Dynamic Calibration Technique for Piezoelectric Sensors Using Negative Going Dynamic Pressure (부방향 동압력을 이용한 압전형 압력센서의 교정기법)

  • Kim, Eung-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.491-499
    • /
    • 2009
  • The determination of response characteristics for pressure sensors is routinely limited to static calibration against a deadweight pressure standard. The strength of this method is that the deadweight device is a primary standard used to generate precise pressure. Its weakness lies in the assumption that the static and dynamic responses of the sensor in question are equivalent. Differences in sensor response to static and dynamic events, however, can lead to serious measurement errors. Dynamic techniques are required to calibrate pressure sensors measuring dynamic events in milliseconds. In this paper, a dynamic calibration using negative going dynamic pressure is proposed to determine dynamic pressure response for piezoelectric sensors. Sensitivity and linearity of sensor by the dynamic calibration were compared with those by the static calibration. The uncertainty of calibration results and the goodness of fit test of linear regression analysis were presented. The results show that the dynamic calibration is applicable to determine dynamic pressure response for piezoelectric sensors.

Fabrication and Characteristics of FET-type Pressure Sensor Using Piezoelectric PZT Thin Film (압전체 PZT 박막을 이용한 FET형 압력 센서의 제작과 그 특성)

  • Kim, Young-Jin;Lee, Young-Chul;Kwon, Dae-Hyuk;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.173-179
    • /
    • 2001
  • The currently used semiconductor pressure sensors are piezoresistive and capacitive type. Especially, semiconductor micro pressure sensors have a great deal of attention because of their small size. However, its fabrication processes are difficult, so that its yield is poor. For the purpose of resolving the drawbacks of the existing silicon pressure sensors, we demonstrate a new type of pressure sensor using PSFET(pressure sensitive field effect transistor) and investigate its operational characteristics. We used PZT(Pb(Zr,Ti)$O_3$) as a pressure sensing material. PZT thin films were deposited on a gate oxide of MOSFET by an rf-magnetron sputtering method. To abtain the stable phase, perovskite structure, furnace annealing technique have been employed in PbO ambient. The sensitivity of the PSFET was 0.38 mV/mmHg.

  • PDF

An automatic calibration technique for piezoelectric pressure transducers (압전형 압력센서의 교정기법 자동화)

  • Hong, Sung-Soo;Choi, Ju-Ho;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1368-1371
    • /
    • 1996
  • This paper presents an automatic calibration technique for piezoelectric low pressure transducer, which is useful to measure a pressure within 500 psi. This system with automatic calibration function and error correction algorithm generates standard dynamic pressure for the calibration of sensor. With the compensation for the offset voltage and the pressure error, the accuracy and the usefulness of the proposed scheme is validated.

  • PDF

An automatic calibration technique for piezoelectric pressure sensors (압전형 압력센서의 교정기법 자동화)

  • Choi, Ju-Ho;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.357-362
    • /
    • 1997
  • This paper suggests an automatic calibration technique for piezoelectric low pressure transducer measuring a pressure blow 500psi. The present calibration system embedded with error correction algorithm generates it's best you don't cut parts of wards like so dynamic pressure and compensates offset voltage and pressure error. It is shown via experimental results that the instrumentation accuracy has been improved and mean time between calibrations has been shortened.

  • PDF

An Automatic Calibration Technique for Piezoelectric Pressure Transducers (압전형 압력센서의 교정기법 자동화)

  • 홍성수;최주호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1012-1016
    • /
    • 1996
  • This paper presents an automatic calibration technique for piezoelectic low pressure transducer, which is useful to measure a pressure within 500 psi. This system with automatic calibration function and error correction algorithm generates standard dynamic pressure for the calibration of sensor. With the compensation for the offset voltage and the pressure error, the accuracy and the usefulness of the proposed scheme is validated.

  • PDF

Analysis of Shear Stress Type Piezoresistive Characteristics in Silicon Diaphragm Structure (실리콘 다이아프램 구조에서 전단응력형 압전저항의 특성 분석)

  • Choi, Chae-Hyoung;Choi, Deuk-Sung;Ahn, Chang-Hoi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.55-59
    • /
    • 2018
  • In this paper, we investigated the characteristics of shear stress type piezoresistor on a diaphragm structure formed by MEMS (Microelectromechanical System) technology of silicon-direct-bonding (SDB) wafers with Si/$SiO_2$/Si-sub. The diaphragm structure formed by etching the backside of the wafer using a TMAH aqueous solution can be used for manufacturing various sensors. In this study, the optimum shape condition of the shear stress type piezoresistor formed on the diaphragm is found through ANSYS simulation, and the diaphragm structure is formed by using the semiconductor microfabrication technique and the shear stress formed by boron implantation. The characteristics of the piezoelectric resistance are compared with the simulation results. The sensing diaphragm was made in the shape of an exact square. It has been experimentally found that the maximum shear stress for the same pressure at the center of the edge of the diaphragm is generated when the structure is in the exact square shape. Thus, the sensing part of the sensor has been designed to be placed at the center of the edge of the diaphragm. The prepared shear stress type piezoresistor was in good agreement with the simulation results, and the sensitivity of the piezoresistor formed on the $2200{\mu}m{\times}2200{\mu}m$ diaphragm was $183.7{\mu}V/kPa$ and the linearity of 1.3 %FS at the pressure range of 0~100 kPa and the symmetry of sensitivity was also excellent.

Carbon-nanotube-based Spacer Fabric Pressure Sensors for Biological Signal Monitoring and the Evaluation of Sensing Capabilities (생체신호 모니터링을 위한 CNT 기반 스페이서 직물 압력센서 구현 및 센싱 능력 평가)

  • Yun, Ha-yeong;Kim, Sang-Un;Kim, Joo-Yong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.65-74
    • /
    • 2021
  • With recent innovations in the ICT industry, the demand for wearable sensing devices to recognize and respond to biological signals has increased. In this study, a three-dimensional (3D) spacer fabric was embedded in a single-wall carbon nanotube (SWCNT) dispersive solution through a simple penetration process to develop a monolayer piezoresistive pressure sensor. To induce electrical conductivity in the 3D spacer fabric, samples were immersed in the SWCNT dispersive solution and dried. To determine the electrical properties of the impregnated specimen, a universal testing machine and multimeter were used to measure the resistance of the pressure change. Moreover, to examine the changes in the electrical properties of the sensor, its performance was evaluated by varying the concentration, number of penetrations, and thickness of the specimen. Samples that penetrated twice in the SWCNT distributed solution of 0.1 wt% showed the best performance as sensors. The 7-mm thick sensors showed the highest GF, and the 13-mm thick sensors showed the widest operating range. This study confirms the effectiveness of the simple process of fabricating smart textile sensors comprising 3D spacer fabrics and the excellent performance of the sensors.

Development of the Strain Measurement-based Impact Force Sensor and Its Application to the Dynamic Brazilian Tension Test of the Rock (변형률 게이지 측정원리를 이용한 충격 하중 센서의 개발 및 암석의 동적 압열 인장 실험에 적용)

  • Min, Gyeong-jo;Oh, Se-wook;Wicaksana, Yudhidya;Jeon, Seok-won;Cho, Sang-ho
    • Explosives and Blasting
    • /
    • v.35 no.3
    • /
    • pp.15-20
    • /
    • 2017
  • In order to obtain the dynamic response behavior of the rock subjected to blasting loading, a shock-proof high sensitivity impact sensor which can measure high frequency dynamic force and strain events should be adopted. Because the impact sensors which uses quartz and piezoelectric element are costly, generally the strain measurement-based impact (SMI) sensors are applied to high speed loading devices. In this study, dynamic Brazilian tension tests of granitic rocks was conducted using the Nonex Rock Cracker (NRC) reaction driven-high speed loading device which adopts SMI sensors. The dynamic response of the granite specimens were monitored and the intermediate strain rate dependency of Brazilian tensile strengths was discussed.

Enhancement of Oxygen Transfer Efficiency Using Vibrating lung Assist Device in In-Vitro Fluid Flow (In-vitro 유동장에서 진동형 폐 보조장치를 이용한 산소전달 효율의 향상)

  • 권대규;김기범;이삼철;정경락;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1332-1335
    • /
    • 2003
  • This paper presents the enhancement of oxygen transfer efficiency using the vibrating intravascular lung assist device (VIVLAD) in in-vitro experiments for patients having chronic respiratory problems. The test section was a cylinder duct with the inner diameter of 30 mm. The flow rate was controlled by the pump and monitored by a built-in flow meter. The vibration apparatus was composed of a piezo-vibrator, a function generator. and a power amplifier. The direction of vibration was radial to the fluid flow. Gas flow rates of up to 6 l/min through the 120-cm-Jong hollow fibers have been achieved by exciting a piezo-vibrator. The output of PVDF sensor were investigated by various frequencies in VIVLAD. The experimental results showed that VIVLAD would be enhance oxygen transfer efficiency.

  • PDF