• Title/Summary/Keyword: 압밀응력

Search Result 278, Processing Time 0.037 seconds

Undrained Shear Strength of Clay and Stability of Sub]marine Slope Undergoing Rapid Deposition (점토의 비배수 전단강도와 지적성퇴적에 의한 해저사면의 안정성)

  • 김승열
    • Geotechnical Engineering
    • /
    • v.4 no.4
    • /
    • pp.5-18
    • /
    • 1988
  • A series of CU triaxial compression tests were conducted to investigate the variation of -untrained shear strength of underconsolidated clay at different degrees of consolidation. The soil samples were artificially made by one-dimensional consolidation using soft Bangkok Clay. The test results showed that the undrained shear strength of clay parabolically increased convoking downward with increasing degrees of consolidation. However, all the measured shear strength were unanimously related to the effective stress. These experimental results were used in the numerical analysis. A finite element computer program was developed to investigate the stability of submarine .slope undergoing rapid deposition taking into account the variation in soil compressibility and permeability during the consolidation process. The relationships of degree of consolidation with time as a function of rate of deposition and angle of slope were established. A method of predicting the time of slope failure and the volume of moving mass of soil was also made.

  • PDF

Development of New Settlement Model for Prediction of Settlement Characteristics of SCP Composite Ground (SCP 복합지반 침하거동예측을 위한 새로운 침하모델의 개발)

  • You, Sang-Ho;Park, Hyun-Il;Im, Jong-Chul;Park, Lee-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.23-32
    • /
    • 2009
  • In this study, the reliable and simple analysis method was proposed to predict the settlement characteristic of composite ground in stage of design and construction of sand compaction pile (SCP). Model parameters could be obtained by the optimization process based on genetic algorithm. In order to examine the proposed method, laboratory consolidation tests on the settlement characteristic of SCP composite ground were performed for various replacement ratio of sand such as 0 (no replacement), 20, 36, and 56%. The proposed model showed very good agreements with measured data in the relation of void ratio-log scaled stress and time-compression far each replacement ratio.

Characteristics of Shear Strength and Elastic Waves in Artificially Frozen Specimens using Triaxial Compression Tests (삼축압축실험을 이용한 인공동결시료의 강도평가 및 탄성파 특성변화)

  • Kim, JongChan;Lee, Jong-Sub;Hong, Seung-Seo;Lee, Changho
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.111-122
    • /
    • 2014
  • For accurate laboratory evaluations of soil deposits, it is essential that the samples are undisturbed. An artificial ground-freezing system is the one of the most effective methods for obtaining undisturbed samples from sand deposits. The objective of this study is to estimate the shear strengths and the characteristics of elastic waves of frozen-thawed and unfrozen specimens through the undrained triaxial compression test. For the experiments, Jumunjin standard sands are used to prepare frozen and unfrozen specimens with similar relative densities (60% and 80%). The water pluviation method is used to simulate the fully saturated condition under the groundwater table. When thawing the frozen specimens, the temperature is measured every minute. After the specimens are completely thawed, undrained triaxial compression tests are conducted using the same procedures as for the unfrozen specimens. During the triaxial tests (saturation, consolidation, and shear phase), compressional and shear waves are measured. The results show that the freeze-thaw process has minor effects on the peak deviatoric stress and shear strength values, and that the process does not affect the internal friction angle. The compressional wave velocity increases with increasing B-value to 1800 m/s in the saturation phase, but tends to remain constant in the process of consolidation and shearing. The shear wave velocity decreases with increasing B-value in the process of saturation, but changes velocity in accordance with the change in effective stress in the processes of consolidation and shearing. The compressional wave velocity has similar values regardless of the freeze-thaw process, but values of shear wave velocity are slighly lower in frozen-thawed specimens than in unfrozen specimens. This study is a preliminary experiment for estimating the shear strength and characteristics of elastic wave velocity in undisturbed frozen specimens that have been obtained using the artificial ground-freezing method.

The response of a single pile to open face tunnelling (Open face 터널시공으로 인한 단독말뚝의 거동)

  • Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.529-545
    • /
    • 2012
  • Three-dimensional (3D) finite element analyses have been performed to study the behaviour of a single pile to open face tunnelling in stiff clay. Several key factors such as tunnelling-induced ground and pile settlement, and shear transfer mechanism have been studied in detail. Tunnelling resulted in the development of pile settlement larger than the Greenfield soil surface settlement. In addition, due to changes in the shear transfer between the pile and the soil next to the pile with tunnel advancement, axial force distributions along the pile change drastically. The apparent allowable pile capacity was reduced up to about 30% due to the development of tunnelling-induced pile head settlement. The skin friction on the pile was increased with tunnel advancement associated with the changes of soil stresses and ground deformation and hence axial pile force distribution was reduced. Maximum tunnelling-induced tensile force on the pile was about 21% of the designed pile capacity. The zone of influence on the pile behaviour in the longitudinal direction may be identified as ${\pm}1$-2D (D: tunnel diameter) from the pile centre (behind and ahead of the pile axis in the longitudinal direction) based on the analysis conditions assumed in the current study. Negative excess pore pressure was mobilised near the pile tip, while positive excess pore pressure was computed at the upper part of the pile. It has been found that the serviceability of a pile experiencing adjacent tunnelling is more affected by pile settlement than axial pile force changes.

Evaluation of Ultimate Bearing Capacity on Granular Compaction Pile Considering Various Stresses in a Ground (지중응력의 변화를 고려한 조립토 다짐말뚝의 극한지지력 평가)

  • Kang, Yun;Yun, Ji-Yeon;Chang, Weon-Ho;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.115-124
    • /
    • 2004
  • Granular compaction pile has the load bearing capacity of the soft ground increase and has the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and prevent the liquefaction caused by earthquake using the granular materials such as sand, gravel, stone etc. However, this method is not widely used in Korea. The granular compaction piles are constructed by grouping them with a raft system. The confining pressure at the center of bulging failure depth is a major variable in estimating the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and the variation of the magnitude of the confining pressure. In this study, a method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge, and loaded area. Also, the ultimate bearing capacity of the granular compaction pile is evaluated on the basis of previous study(Kim et al., 1998) on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests and DEM numerical analysis using the PFC-2D program.

Secondary Compression Characteristics Caused by Particles Crushing of Sabkha Soil (입자파쇄 특성에 따른 Sabkha층의 이차압축 특성)

  • Kim, Seok-Ju;Bae, Kyung-Tae;Yi, Chang-Tok;Han, Heui-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.61-72
    • /
    • 2013
  • The consolidation tests are conducted to investigate the soil particle crushing stress for understanding the secondary compression characteristics of carbonate sandy sabkha soil caused by particle crushing under a high confining stress. The rate of secondary crushing compression ($C_{{\alpha}{\epsilon}}{^*}$) is introduced instead of the rate of secondary compression to define the characteristic of the particle crushing compression settlement ($S_s{^*}$). Void ratio ($e_p{^*}$) and settlement ($H_p{^*}$) in particle crushing are used as a reference point of secondary behavior, and the ratio of primary compression index ($C_c$) to secondary crushing compression ($C_{{\alpha}{\epsilon}}{^*}$), $C_{{\alpha}{\epsilon}}{^*}/C_c$ value was changed from 0.0105 to 0.0187. When comparing with quartz sands, secondary compression settlement of sabkha is very large due to particle crushing which is not usually observed in quartz sand. It is observed that as the depth of sabkha layer becomes deep, the $S_s{^*}$ and $C_{{\alpha}{\epsilon}}{^*}$ increase under the same stress level.

Carbonation Behavior Evaluation of OPC Concrete Considering Effect of Aging and Loading Conditions (재령 및 하중효과를 고려한 OPC 콘크리트의 탄산화 거동 평가)

  • Hwang, Sang-Hyeon;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.122-129
    • /
    • 2019
  • The movement of deterioration agents such as a chloride ion, etc. in concrete varies with loading conditions and micro-structure developed by age effect. In this paper, the carbonation behavior by accelerated carbonation test is evaluated considering curing periods(28 days, 91 days, and 365 days) and loading conditions. Carbonation velocity coefficients are obtained referred to KS F 2584. In the control case without loading condition, carbonation velocity coefficient of 91 days decreases to 50.0 % level and that of 365 days decreases to 44.8 % level than that of 28 days curing condition. In 28 curing days, carbonation velocity coefficients changed level of 103.9 ~ 108.8 % in tensile region and 91.9~104.6 % in compressive region by loading conditions. Carbonation velocity coefficients in the 30 % and 60 % tensile loading case at 28 days decreases to 47.3 % and 52.5 % level compared to control case after 1 year. Furthermore, 45.8 % and 44.9 % level of carbonation velocity coefficients are evaluated for 30 % and 60 % compressive loading conditions compared to control case after 1 year. Carbonation velocity coefficient decreases in the 30 % compressive loading level due to effective pore compaction and it increases afterwards due to micro-cracking. In the tensile loading condition, unlike the behavior of compressive region, it linearly increases with increasing loading level.

Behaviors of Soft Bangkok Clay behind Diaphragm Wall Under Unloading Compression Triaxial Test (삼축압축 하에서 지중연속벽 주변 방콕 연약 점토의 거동)

  • Le, Nghia Trong;Teparaksa, Wanchai;Mitachi, Toshiyuki;Kawaguchi, Takayuki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.9
    • /
    • pp.5-16
    • /
    • 2007
  • The simple linear elastic-perfectly plastic model with soil parameters $s_u,\;E_u$ and n of undrained condition is usually applied to predict the displacement of a constructed diaphragm wall(DW) on soft soils during excavation. However, the application of this soil model for finite element analysis could not interpret the continued increment of the lateral displacement of the DW for the large and deep excavation area both during the elapsed time without activity of excavation and after finishing excavation. To study the characteristic behaviors of soil behind the DW during the periods without excavation, a series of tests on soft Bangkok clay samples are simulated in the same manner as stress condition of soil elements happening behind diaphragm wall by triaxial tests. Three kinds of triaxial tests are carried out in this research: $K_0$ consolidated undrained compression($CK_0U_C$) and $K_0$ consolidated drained/undrained unloading compression with periodic decrement of horizontal pressure($CK_0DUC$ and $CK_0UUC$). The study shows that the shear strength of series $CK_0DUC$ tests is equal to the residual strength of $CK_0UC$ tests. The Young's modulus determined at each decrement step of the horizontal pressure of soil specimen on $CK_0DUC$ tests decreases with increase in the deviator stress. In addition, the slope of Critical State Line of both $CK_0UC$ and $CK_0DUC$ tests is equal. Moreover, the axial and radial strain rates of each decrement of horizontal pressure step of $CK_0DUC$ tests are established with the function of time, a slope of critical state line and a ratio of deviator and mean effective stress. This study shows that the results of the unloading compression triaxial tests can be used to predict the diaphragm wall deflection during excavation.

The Change in Geotechnical Properties of Clay Liner and the Contamination Behavior of Groundwater Due to Contaminant (오염물질에 의한 점토 차수재의 역학적 특성변화 및 지하수 오염거동)

  • Ha, Kwang-Hyun;Lee, Sang-Eun;Chung, Sung-Rae;Chun, Byung-Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.13-23
    • /
    • 2008
  • The triaxial compression tests and consolidation tests using NaCl solution and leachates as substitute pore (or saturated) water in samples were carried out to find out the behavior characteristics of strength, deformation and permeability coefficient of contaminated clay. Also, the chemical property analysis on the clay samples using scanning electron microscope and energy dispersive x-ray spectrometer were involved. The magnitudes of composition ratio were shown in the order of O, C, Si, Al, and Fe as a result of chemical composition analysis for clay samples. Besides, as the results of triaxial compression tests and consolidation tests, the shear strength, compression and permeability properties were increased with increasing in the concentration of contaminant (NaCl). It may be considered that these circumstances be caused by the changes of soil structure to flocculent structure due to the decrease in the thickness of diffuse double layer with increasing in the concentration of electrolyte. MT3D model was also using to grasp the procedures that the groundwater may be contaminated by the leachates permeated through the clay liner. The results of contaminant transport analysis showed a tendency that the predicted concentration of groundwater was higher with increasing in the initial concentration of $Cl^-$ ion and increased as a nonlinear curves with time. The transportation distance calculated by the use of regression equation between the distance from contaminant source and the concentration of $Cl^-$ ion was increased with increasing the initial concentration.

The Characteristics on Infiltration of Fine-Grained Soil into Various Materials for Ground Drainage (지반 배수재에 따른 세립토의 관입특성)

  • Koh, Yongil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.11
    • /
    • pp.39-43
    • /
    • 2015
  • In this study, the infiltration quantity of fine-grained soil into coarse-grained soil or aggregate for methods to accelerate consolidation drainage is checked by laboratory tests under various conditions and those characteristics on infiltration are examined closely. Irrespectively of pressures to fine-grained soil corresponding to stresses in a soil mass or moisture contents of fine-grained soil, fine-grained soil does not infiltrate into standard sand and marine sand, so it is verified that drain-resistance into sand mass of drainage / pile does not occur entirely and its shear strength would increase highly by water compaction. It is known that the infiltration depth of fine-grained soil into aggregate increases according that those size is larger in case of aggregates and it increases according that the pressure or the moisture contents is higher in case of same size aggregate. It is thought that drain-resistance into aggregate mass of drainage / pile would occurs by infiltrated fine-grained soil in advance though the infiltration depth of fine-grained soi of lower moisture content than liquid limit into 13 mm aggregate is low quietly. So gravel drain method or gravel compaction pile method, etc. using aggregate of gravels or crushed stones, etc. larger than sand particle size should be not applied in very soft fine-grained soil mass of higher natural moisture contents than liquid limit, and it is thought that its applying is not nearly efficient also in soft fine-grained soil mass of lower natural moisture contents than liquid limit.