• Title/Summary/Keyword: 압력모니터링

Search Result 182, Processing Time 0.024 seconds

Carbon-nanotube-based Spacer Fabric Pressure Sensors for Biological Signal Monitoring and the Evaluation of Sensing Capabilities (생체신호 모니터링을 위한 CNT 기반 스페이서 직물 압력센서 구현 및 센싱 능력 평가)

  • Yun, Ha-yeong;Kim, Sang-Un;Kim, Joo-Yong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.65-74
    • /
    • 2021
  • With recent innovations in the ICT industry, the demand for wearable sensing devices to recognize and respond to biological signals has increased. In this study, a three-dimensional (3D) spacer fabric was embedded in a single-wall carbon nanotube (SWCNT) dispersive solution through a simple penetration process to develop a monolayer piezoresistive pressure sensor. To induce electrical conductivity in the 3D spacer fabric, samples were immersed in the SWCNT dispersive solution and dried. To determine the electrical properties of the impregnated specimen, a universal testing machine and multimeter were used to measure the resistance of the pressure change. Moreover, to examine the changes in the electrical properties of the sensor, its performance was evaluated by varying the concentration, number of penetrations, and thickness of the specimen. Samples that penetrated twice in the SWCNT distributed solution of 0.1 wt% showed the best performance as sensors. The 7-mm thick sensors showed the highest GF, and the 13-mm thick sensors showed the widest operating range. This study confirms the effectiveness of the simple process of fabricating smart textile sensors comprising 3D spacer fabrics and the excellent performance of the sensors.

The Improvement of Survivability of Fiber Brags Grating Sensors Embedded into Filament Wound Pressure Tanks (필라멘트 와인딩된 복합재료 압력탱크에 삽입된 광섬유 브래그 격자 센서의 생존율 향상)

  • Kang, D. H.;Park, S. W.;Park, S. O.;Kim, C. G.
    • Composites Research
    • /
    • v.18 no.5
    • /
    • pp.1-8
    • /
    • 2005
  • Among many fabrication methods of composite materials, filament winding is the most effective method for fabricating axis-symmetric structures such as pressure tanks and pipes. Filament wound pressure tanks are under high internal pressure during the operation and it has the complexity in damage mechanisms and failure modes. For this reason, it is necessary to monitor the tank through its operation as well as whole fabrication process. A large number of sensors must be embedded into multi points of the tank from its fabrication step for monitoring the whole tank. Fiber optic sensors, especially fiber Bragg grating(FBG) sensors are widely used for various applications because of good multiplexing capabilities. However, we need to develop the embedding technique of FBG sensors into harsh inner environment of the tank far the successful embedment. In this paper, we studied the embedding technique of a number of FBG sensors into filament wound pressure tanks considering multiplexing.

A Study on Fault Detection Monitoring and Diagnosis System of CNG Stations based on Principal Component Analysis(PCA) (주성분분석(PCA) 기법에 기반한 CNG 충전소의 이상감지 모니터링 및 진단 시스템 연구)

  • Lee, Kijun;Lee, Bong Woo;Choi, Dong-Hwang;Kim, Tae-Ok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.53-59
    • /
    • 2014
  • In this study, we suggest a system to build the monitoring model for compressed natural gas (CNG) stations, operated in only non-stationary modes, and perform the real-time monitoring and the abnormality diagnosis using principal component analysis (PCA) that is suitable for processing large amounts of multi-dimensional data among multivariate statistical analysis methods. We build the model by the calculation of the new characteristic variables, called as the major components, finding the factors representing the trend of process operation, or a combination of variables among 7 pressure sensor data and 5 temperature sensor data collected from a CNG station at every second. The real-time monitoring is performed reflecting the data of process operation measured in real-time against the built model. As a result of conducting the test of monitoring in order to improve the accuracy of the system and verification, all data in the normal operation were distinguished as normal. The cause of abnormality could be refined, when abnormality was detected successfully, by tracking the variables out of the score plot.

The Embodiment of GAS Pressure Controller for Temperature Control of Sing Crystal $(Al_2O_3)$ Growing Furnace (단결정$(Al_2O_3)$ 성장 노(爐)의 온도 조절용 GAS압력 제어기의 구현)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.207-211
    • /
    • 2007
  • It is a quite quality concerning to control the temperature of single crystalline growth as it does when we get most of heat treating products. It is also important factor to control the temperature when we make the $Al_2O_3$(single crystalline) used to artificial jewels, glass of watches, and heat resistant transparent glasses. Thus, it is a major interest to get the proper temperature in accordance with the time process while we are making mixture of oxygen and hydrogen to have the right temperature. In this paper, we will study of electrical valve positioning system with DC-Motor for the gas mixture to improve the quality of products.

  • PDF

Fire Extinguisher Maintenance System using Smart NFC Communication and Real-Time Pressure Measurement (스마트 NFC 통신과 실시간 압력 측정을 이용한 소화기 유지관리 시스템)

  • Park, Byeng-Cheol;Park, Ki-Hong
    • Journal of Digital Contents Society
    • /
    • v.18 no.2
    • /
    • pp.403-410
    • /
    • 2017
  • In this paper, the fire extinguisher maintenance system using smart NFC communication and the real-time pressure measurement is proposed. The proposed system consists of three steps in the flow of information. The first step is to identify the fire extinguisher through NFC tagging in the fire extinguisher module using the smart device. The fire extinguisher appearance check and the real-time pressure measurement is performed in the second step, and the last step sends the check status information to the management server. In particular, the actual pressure value is calculated based on the angle of the green area and the indicating needle. Some experiments are conducted so as to verify the proposed system, and as a result, the proposed system shows that the administrator can effectively control the status information of fire safety check.

Monitoring of Aflatoxins on Commercial Herbal Medicines (유통생약의 아플라톡신 모니터링)

  • Park, Seung-Young;Moon, Hyun-Ju;Cho, Soo-Yeul;Lee, Jun-Gu;Lee, Hwa-Mi;Song, Ji-Young;Cho, Ok-Sun;Cho, Dae-Hyun
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.4
    • /
    • pp.315-321
    • /
    • 2011
  • This study was performed to investigate contamination levels of aflatoxins, the secondary metabolites produced by fungi Aspergillus flavus and A. parasiticus, in herbal medicine. Herbs is susceptible to these fungi infections through its growth harvest, transport and storage. This study determine the aflatoxin $B_1$, $B_2$, $G_1$ and $G_2$ levels by HPLC-florescence detector coupled with photochemical enhancement in 558 samples herbal medicine distributed in Korea and China. Also, We checked a transfer ratio of aflatoxins from raw herbal medicines to herbal medicine extract. Hot water extraction of herbal medicines was prepared by air pressure and high pressure condition. The analytical method for aflatoxins was validated in this method. In results recoveries of the analytical method were ranged from 67.4% to 96.2% and, limits of detection and quantitation for aflatoxins were $0.015{\sim}0.138\;{\mu}g/kg$ and $0.046{\sim}0.418\;{\mu}g/kg$, respectively. According to the results of monitoring on aflatoxins in herbal medicine, aflatoxins 1.7 ug/kg $B_1$ and 0.9 ug/kg $G_1$ were detected in only one sample of Strychni Ignatii Semen, and 0.8 ug/kg $G_1$ in Strychni Semen. About 13.6~51.3% of aflatoxins were transferred to hot water extract. Although the detected levels are under the permitted levels for aflatoxins in herbal medicine, these amounts should be considered in regard to overall daily exposure to mycotoxins.

A study on early faults detection of pressurizer pressure control system using MTS (MTS를 이용한 가압기 압력 제어 계통의 조기 고장 감지에 대한 연구)

  • Cha, Jae-Min;Kim, Joon-Young;Shin, Junguk;Yeom, Choongseob;Kang, Seong-Ki
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1385-1398
    • /
    • 2016
  • A pressurizer is a major equipment system in a nuclear power plant (NPP) and controls the reactor cooling system pressure within the allowable range. Faults in the pressurizer can be critical to the NPP; therefore, early fault detection in the pressurizer is significant for NPP safety. This study applies Mahalanobis Taguchi system (MTS), which is one of the promising pattern classification methods, based on the Mahalanobis distance concept and Taguchi quality engineering theory to the early fault detection problem of the pressurizer pressure control system. We conducted experiments using data from full scope NPP simulator based on a pressurizer pressure transmitter faults scenario to validate the faults detection performance of MTS. As a result, MTS can rapidly detect the faults compared to conventional faults detection based on single sensor monitoring.

A Study on Pipeline Network Analysis for Predicting Pressure and Flow rate Transients in City-gas Supply Lines (도시가스 공급라인의 압력 및 유량변화 예측을 위한 배관망 해석 연구)

  • Nam, Jin-Hyun;Cho, Chan-Young;Jang, Sung-Pill;Lim, Si-Hyung;Shin, Dong-Hoon;Chung, Tae-Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.85-91
    • /
    • 2008
  • The deviation of measured pressures in pipeline networks from normal or reference pressures is useful information for judging the operation of the pipeline networks. A cost-effective monitoring of pipeline networks including a leak detection capability can be realized when transient pressure variation is accurately predicted using measured conditions at supply- and demand-sides of the networks. In this study, a pipeline network analysis program was developed based on one-dimensional flow equations for compressible fluids. The validity of the present analysis was demonstrated by simulating the flow in a straight pipeline and comparing the results with the previously reported ones. Pressure and flow rate transients in several simple city-gas pipeline networks were also analyzed to show the usefulness of the developed program.

  • PDF

A Study of the Basic Design for Smart Clothing based on Measurement of the Respiration (호흡 측정 기능의 스마트 의류를 위한 기초 디자인 연구)

  • Cho, Ha Kyung;Min, Se Dong
    • Science of Emotion and Sensibility
    • /
    • v.15 no.4
    • /
    • pp.415-424
    • /
    • 2012
  • According to introduction of Well-Being lifestyle and ageing society, vital sign monitoring system which can be continued measurement of vital sign has been increased their important in field of the healthcare. Under this trend, Respiration monitoring system has been studied and developed in a various way to apply continued monitoring and non-conscious monitoring system. But, Study of the respiration monitoring system based on consumer needs and usability test is insufficient. In this study, Textile capacitive pressure sensor(TCPS) of belt type was developed and tested it's utility and subjective sensibility. TCPS measures respiration signals and can be derived in real time monitoring. As a result, monitoring respiration using textile capacitive pressure sensor offers a promising possibility of convenient measurement of respiration rate (correlation (r=0.9553, p<0.0001). In the result of usability and wearability test, all of categorizes(perceived change, wearability, movement, facility of management, usefulness) were received favorable evaluation on usability test( mean value : 3.8), and suitable location of TCPS in the clothing is deriven on the abdomen part. According to synthetical results, Basic smart clothing design based on respiration monitoring system is proposed.

  • PDF

Response of Ultrafiltration Flux to Periodic Oscillations in Transmembrane Pressure Gradient (압력구배의 주기적 변화에 따른 한외여과 Flux의 변화)

  • 서창우;이은규
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.230-234
    • /
    • 1999
  • To improve the crossflow untrafiltration flux, we applied periodic oscillations in transmembrane pressure gradient in order to promote fluid turbulence by inducing repeated compression and relaxation of the cake/gel layer. The oscillatory forms used were square-, sine-, triangle-wave, and pumping interruption. The permeate flux profiles were mathematically simulated and compared with the experimental data. The result showed the periodic pumping interruption most effectively improved the overall flux by up to about 32%. Enough pumping off-time, at least on the order of tens of seconds, was needed to allow the solutes in the layer to diffuse back to the bulk phase. It was better to start the oscillations earlier before the layer was fully established. The square-wave oscillation yielded about 11% increase, which was particularly pronounced in the later part of the filtration. Either the amplitude or the period of the oscillations resulted little influence on flux.actate ester, and lactate ester produced in esterification reaction was distilled simultaneously with hydrolysis reaction into lactic acid. When the yields of lactic acid recovered by batch reactive distillations with various alcohols were compared, the yield of lactic acid was increased as the volatility of lactate ester was increased. In this batch reactive distillation, because the mixtures condensed in partial condensor were flown to reboiler through distillation column, the recovery yield of lactic acid was affected by operation temperature of partial condensor. Hydrolysis reaction into lactic acid in distillation column rarelyoccurred because of short retention time of lactate ester and water. Lactate ester was reacted into lactic acid in reboiler.

  • PDF