• Title/Summary/Keyword: 암설 퇴적물

Search Result 8, Processing Time 0.019 seconds

The Morphological Change by Slope Erosional Processes in the Dokdo Seamount (독도해산의 사면침식으로 인한 지형변화)

  • Kang, Ji-Hyun;Sung, Hyo-Hyun;Park, Chan-Hong;Kim, Chang-Hwan;Jeong, Eui-Young
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.6
    • /
    • pp.791-807
    • /
    • 2008
  • The purpose of this study is to analyze landform characteristics and geomorphic processes in Dokdo seamount. For geomorphic analysis, bathymetry data were collected by multi-beam echosounder and the seismic survey was also conducted. Through the detailed analysis of depth, slope, aspect and erosional landform, Dokdo Seamount is characterized by a flat or gently sloping top of $2^{\circ}$ or less and seamount slope with $14{\sim}40^{\circ}$ gradient. There are protrusion of landform around the Dokdo on top of the Dokdo seamount. It is inferred that the features are formed by collapsed debris deposits or remained bedrocks by differential erosion in the past. The massmovement topography including slump and slide is shown on seamount slope with $14{\sim}40^{\circ}$ gradient. In addition, gullies with various length are developed on the Dokdo seamount slope. Slope erosional processes occur more actively along the submarine gullies on the Dokdo seamount. It is inferred that the massmovement processes on the slope of Dokdo seamount are related to earthquake activities and evolution of submarine volcano. Consequently, slope of the Dokdo seamount has retreated by erosional processes of mass-movement and submarine gullies.

Depositional features and sedimentary facies of steep-faced fan-delta systems: modern and ancient (현생 및 고기 급경사 선상지-삼각쭈계 퇴적층의 특성과 퇴적상)

  • Choe M. Y.;Chough S. K.;Hwang I. G.
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.71-81
    • /
    • 1994
  • Alluvial fan delta often extends into deep water, forming steep-faced delta front. Depositional features of modern steep-faced fan-delta slope and prodelta are characterized by slump scar, chute/channel, swale, lobe, splay and debris fall. These features largely originate from sediment failure or sediment-laden underflows (sediment-gravity flows) off river mouth. Sedimentary facies of equivalent ancient systems comprise sheetlike and/or wedged bodies of gravelstone and sandstones, slump-scar and -fill, chute/channel-fills, and sheetlike, lobate and slump mass on steeply-inclined fan-delta foreset and prodelta.

  • PDF

The Morpho-Climatic Characteristics of Stratified Slope Deposits in the Southwest Region of Haenam (해남 남서부지역의 Stratified Slope Deposit의 기후지형학적 특성)

  • PARK, Chul-Woong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.15 no.2
    • /
    • pp.11-24
    • /
    • 2008
  • Stratified slope was formed on the SSE-facing slope in the southwest region of Haenam, South Korea. Field and laboratory investigations into the geomorphology and sedimentology of stratified slope deposit that is inactive. Outcrops of this deposit show an alteration of coarse debris-supported matrix and tiny debris-supported matrix layers. Sedimentological analysis(particle-size analysis) indicates that this deposit is not fluvial process or only gravitation like rock-fall. Many clasts and fine materials on the slope is supposed to be product by congelifraction under Pleistocene periglacial climatic environment. Also The processes responsible for the genesis of this deposit probably are to move downward by gelifluction and to remove fine materials by slope wash in thawing cycle and in situ debris congelifraction on gelifluction slope. Now It is impossible to account for the time range of genesis(diurnal, seasonal). In conclusion, this stratified slope formed in cold and humid periglacial environmental in pleistocene, therefore, this slope is a periglacial relic landform, indicates that in south korea there was a cold and humid paleo-climate such as periglacial environmen.

Conservation Measure of Sajapyeong Alpine Wetland (사자평 고산습지의 보전대책)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.2
    • /
    • pp.141-149
    • /
    • 2011
  • The formation of Sajapyeong Alpine Wetland was influenced by factors of drainage basin and its geology, and fire-shifting cultivation. Sajapycong drainage basin had a narrow outlet, Sijeon-cheon in it flowed relatively slowly. Bedrock in basin was weak to mechanical weathering, many rock detritus were, produced. Deforestation for reclamation using fire accelerated topsoil loss. Thus much sediments was supplied to Sijeon-cheon and deposited in the channel bed, and wetland was formed on channel marginal footslope. In Sajapyeong moor were Gullies formed along road. Because they blocked sediments and throughflow transferring into moor, moor became dry land. In order to prevent this drying, we have, to raise water level of a drain ditch to level of weathered bedrock to transfer throughflow into moor, modify the shape of ditch to be naturally irregular, and construct large boulders step on the Sijeon-cheon bed to prevent from lowering of its bed.

  • PDF

Geomorphological Processes of Yuga Alluvial Fan in Korea (유가 선상지의 지형 형성과정)

  • Lee, Gwang-Ryul;Cho, Young Dong
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.2
    • /
    • pp.204-217
    • /
    • 2013
  • This study shows the geomorphological processes of Yuga alluvial fan at Dalseong-gun, Daegu in Korea, based on characteristics of geomorphological surfaces, analysis of geomorphological deposits and OSL age dating. Alluvial fans of this area are classified into three surfaces(YG-F1, YG-F2, YG-F3) and were formed by the depositional processes resulting from the changes in hydraulic geometry of flowing water which was a stream flowing out of mountains debouched on to a plain, not by a sudden decrease in surface gradient of river bed. YG-F3 surface, about 110,000 yr B.P.(MIS 5.4), was formed as Yongri river deposited a lot of debris. This result was due to the process that the deposition took place actively with the upward of base level as the last interglacial period began. Later, the denudation of the river valley and geomorphological surface constantly occurred and the local and seasonal changes were found in precipitation and stream discharge with the beginning of the interstadial of the last glacial stages(MIS 3), leading to YG-F2 formed by debris flow, earth flow, mud flow and stream flow. Then, short-term climate changes and temporal climate events repeatedly caused aggradation and denudation over time and going through these processes, YG-F1 is believed to have been made by earth flow or mudflow during the last glacial maximum(MIS 2).

  • PDF

The Study on the Debris Slope Landform in the Southern Taebaek Mountains (태백산맥 남부산지의 암설사면지형)

  • Jeon, Young-Gweon
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.2
    • /
    • pp.77-98
    • /
    • 1993
  • The intent of this study is to analyze the characteristics of distribution, patter, and deposits of the exposed debris slope landform by aerial photography interpretation, measure-ment on the topographical maps and field surveys in the southern part Taebaek mountains. It also aims to research the arrangement types of mountain slope and the landform development of debris slopes in this area. In conclusion, main observations can be summed up as follows. 1. The distribution characteristics 1)From the viewpoint of bedrocks, the distribution density of talus is high in case of the bedrock with high density of joints, sheeting structures and hard rocks, but that of the block stream is high in case of intrusive rocks with the talus line. 2)From the viewpoint of bedrocks, the distribution density of talus is high in case of the bedrock with high density of joints, sheeting structures and hard rocks, but that of the block stream is high in case of inrtusive rocks with the talus line. 2) From the viewpoint of distribution altitude, talus is mainly distributed in the 301~500 meters part above the sea level, while the block stream is distributed in the 101~300 meters part. 3) From the viewpoint of slope oriention, the distribution density of talus on the slope facing the south(S, SE, SW) is a little higher than that of talus on the slope facing the north(N, NE, NW). 2. The Pattern Characteristics 1) The tongue-shaped type among the four types is the most in number. 2) The average length of talus slope is 99 meters, especially that of talus composed of hornfels or granodiorite is longer. Foth the former is easy to make free face; the latter is easdy to produce round stones. The average length of block stream slope is 145 meters, the longest of all is one km(granodiorite). 3) The gradient of talus slope is 20~45${^\circ}$, most of them 26-30${^\croc}$; but talus composed of intrusive rocks is gentle. 4) The slope pattern of talus shows concave slope, which means readjustment of constituent debris. Some of the block stream slope patterns show concave slope at the upper slope and the lower slope, but convex slope at the middle slope; others have uneven slope. 3. The deposit characteristics 1) The average length of constituent debris is 48~172 centimeters in diameter, the sorting of debris is not bad without matrix. That of block stream is longer than that of talus; this difference of debris average diameter is funda-mentally caused by joint space of bedrocks. 2) The shape of constituent debris in talus is mainly angular, but that of the debris composed of intrusive rocks is sub-angular. The shape of constituent debris in block stream is mainly sub-roundl. 3) IN case dof talus, debris diameter is generally increasing with downward slope, but some of them are disordered and the debris diameter of the sides are larger than that of the middle part on a landform surface. In block stream, debris diameter variation is perpendicularly disordered, and the debris diameter of the middle part is generally larger than that of the sides on a landform surface. 4)The long axis orientation of debris is a not bad at the lower part of the slope in talus (only 2 of 6 talus). In block stream(2 of 3), one is good in sorting; another is not bad. The researcher thinks that the latter was caused by the collapse of constituent debris. 5) Most debris were weathered and some are secondly weathered in situ, but talus composed of fresh debris is developing. 4. The landform development of debris slopes and the arrangement types of the mountain slope 1) The formation and development period of talus is divided into two periods. The first period is formation period of talus9the last glacial period), the second period is adjustment period(postglacial age). And that of block stream is divided into three periods: the first period is production period of blocks(tertiary, interglacial period), the second formation period of block stream(the last glacial period), and the third adjustment period of block stream(postglacialage). 2) The arrangement types of mountain slope are divided into six types in this research area, which are as follows. Type I; high level convex slope-free face-talus-block stream-alluvial surface Type II: high level convex slope-free face-talus-alluvial surface Type III: free face-talus-block stream-all-uvial surface Type IV: free face-talus-alluval surface Type V: talus-alluval surface Type VI: block stream-alluvial surface Particularly, type IV id\s basic type of all; others are modified ones.

  • PDF

Comparative Analysis of Bathymetry in the Dongdo and the Seodo, Dokdo using Multibeam Echosounder System (다중빔 음향 측심기를 이용한 독도 동도와 서도 남부 연안 해저지형 비교 분석)

  • Lee, Myoung Hoon;Kim, Chang Hwan;Park, Chan Hong;Rho, Hyun Soo;Kim, Dae Choul
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.477-486
    • /
    • 2017
  • In this study, we analyze precise seabed geomorphology and conditions for comparing the nearshore areas of the Dongdo(East Island) and the Seodo(West Island) using detailed bathymetry data and seafloor backscattering images, in Dokdo, the East Sea. We have been obtained the detailed bathymetry data and the seafloor backscattering data. The survey range is about $250m{\times}250m$ including land of islets to the nearshore areas of the southern part of the Dongdo and the Seodo. As a result of bathymetry survey, the southern area of the Dongdo(~50 m) is deeper than the Seodo(~30 m) in the water depth. The survey areas are consist of extended bedrocks from land of the Dongdo and the Seodo. The underwater rock region of the Seodo is larger than the Dongdo. In spite of similar extended rocks features from islets, there are some distinctive seabed characteristics between the southern nearshore areas of the Dongdo and the Seodo. The Talus-shaped seafloor environment formed by gravel and underwater rocks originating from the land of the Dongdo is up to about 15 m depth. And the boundary line of between extended bedrocks and seabottom is unclear in the southern nearshore of the Dongdo. On the other hand, the southern coast of the Seodo is characterized by relatively large scale underwater rocks and evenly distributed sediments, which clearly distinguish the boundary of between extended bedrocks and seafloor. This is because the tuff layers exposed to the coastal cliffs of the Dongdo are weak against weathering and erosion. It is considered that there are more influences of the clastic sediments carried from the land of the Dongdo compared with the Seodo. Particularly, the land of the Dongdo has been undergoing construction activities. And also a highly unstable ground such as faults, joints and cracks appears in the Dongdo. In previous study, there are dissimilar features of the massive tuff breccia formations of the Dongdo and the Seodo. These conditions are thought to have influenced the different seabed characteristics in the southern nearshore areas of the Dongdo and the Seodo.

Acoustic images of the submarine fan system of the northern Kumano Basin obtained during the experimental dives of the Deep Sea AUV URASHIMA (심해 자율무인잠수정 우라시마의 잠항시험에서 취득된 북 구마노 분지 해저 선상지 시스템의 음향 영상)

  • Kasaya, Takafumi;Kanamatsu, Toshiya;Sawa, Takao;Kinosita, Masataka;Tukioka, Satoshi;Yamamoto, Fujio
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.80-87
    • /
    • 2011
  • Autonomous underwater vehicles (AUVs) present the important advantage of being able to approach the seafloor more closely than surface vessel surveys can. To collect bathymetric data, bottom material information, and sub-surface images, multibeam echosounder, sidescan sonar (SSS) and subbottom profiler (SBP) equipment mounted on an AUV are powerful tools. The 3000m class AUV URASHIMA was developed by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). After finishing the engineering development and examination phase of a fuel-cell system used for the vehicle's power supply system, a renovated lithium-ion battery power system was installed in URASHIMA. The AUV was redeployed from its prior engineering tasks to scientific use. Various scientific instruments were loaded on the vehicle, and experimental dives for science-oriented missions conducted from 2006. During the experimental cruise of 2007, high-resolution acoustic images were obtained by SSS and SBP on the URASHIMA around the northern Kumano Basin off Japan's Kii Peninsula. The map of backscatter intensity data revealed many debris objects, and SBP images revealed the subsurface structure around the north-eastern end of our study area. These features suggest a structure related to the formation of the latest submarine fan. However, a strong reflection layer exists below ~20 ms below the seafloor in the south-western area, which we interpret as a denudation feature, now covered with younger surface sediments. We continue to improve the vehicle's performance, and expect that many fruitful results will be obtained using URASHIMA.