• Title/Summary/Keyword: 암석 모델링

Search Result 97, Processing Time 0.025 seconds

An Experimental and Theoretical Evaluation of the Axial Vibration Properties of a Typical Drillstring (드릴스트링의 종진동 특성에 대한 실험적 및 이론적 연구)

  • Lee,
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.107-115
    • /
    • 1995
  • An analytical model for drillstring axial vibration is proposed. The drillstring is modelled as an equivalent stepwise uniform bar, and the bottom boundary is modelled asa spring and a damper which depend on WOB(weight on bit). The effect of tool joints and the effect of surrounding layers, such as mud and formation, are evaluated theoretically. To investigate the bottom boundary condition, a forced axial vibration testing technique was developed and the tests with a typical drillstring were performed at various WOB's. The results show good agreement with theoretical results. An important conclusion is that the flexibility of the bottom rock must be included in order to predict resonant frequencies of the drillstring axial vibration.

  • PDF

Modelling for TBM Performance Prediction (TBM 굴진성능 예측을 위한 모델링)

  • 이석원;최순욱
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.413-420
    • /
    • 2003
  • Modelling for performance prediction of mechanical excavation is discussed in this paper. Two of the most successful performance prediction models, namely theoretical based CSM model and empirical based NTH model, are discussed and compared. The basic principles of rock cutting with disc cutters, especially Constant Cross Section cutters, are discussed and a theoretical model developed is introduced to provide an estimate of disc cutting forces as a function of rock properties and the cutting geometry. General modelling logic for the performance prediction of mechanical excavation is introduced. CSM computer model developed and currently used at the Earth Mechanics Institute(EMI) of the Colorado School of Mines is discussed. Example of input and output of this model is illustrated for the typical operation by Tunnel Boring Machine(TBM).

Modeling of rock dilation and spalling in an underground opening at depth (대심도 지하공동에 발생하는 암반의 팽창 및 스폴링 현상 모델링)

  • Cho, Nam-Kak;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.31-41
    • /
    • 2010
  • This paper presents both numerical and physical modeling approaches for the dilation and spalling of rock recognized as typical process of rock around an underground opening at depth. For physical approach, laboratory testing of rectangular beams using a synthetic rock was used to investigate the onset of dilation and spalling. The beams are axially compressed and subjected to 4-point bending to provide non-uniform compressive stresses which are similar to the maximum tangential stress distribution around circular openings. Discrete element numerical analyses using commercial code $PFC^{2D}$ (Particle Flow Code) were performed to evaluate the stress path at various locations in the beams. The findings from these approaches suggest that the onset of dilation in laboratory tests appears to be a good indicator for assessing the stress magnitudes required to initiate spalling.

Evaluating the Shape Parameters of Jiang's Explosion Pressure Function Based on the Rise and Fall Time Intervals (상승 및 하강시간에 기초한 Jiang의 폭압함수의 형상변수 평가)

  • Byung-Hee Choi;Hyunwoo Kim;Se-Wook Oh
    • Explosives and Blasting
    • /
    • v.42 no.3
    • /
    • pp.1-8
    • /
    • 2024
  • The pressure-time histories recorded from blast holes exhibit wide variability depending on the type of explosives used. However, these history curves can generally be divided into the rising and falling branches. This characteristic is valuable for defining the time history of explosion pressure in rock blast modeling. However, the explosion pressure function proposed by Jiang et al. has two shape parameters which are explicitly related to the rise time interval, but not to the fall time interval. Hence, this study derived two conversion relations that can exactly translate given rise and fall time intervals into the shape parameters. Then, the conversion relations were utilized to approximate other pressure functions with the Jiang's function. This allows for greater emphasis on the physically significant rise and fall times, rather than on the pressure function itself, in the context of rock blast modeling.

Grain-Based Distinct Element Modelling of the Mechanical Behavior of a Single Fracture Embedded in Rock: DECOVALEX-2023 Task G (Benchmark Simulation) (입자기반 개별요소모델을 통한 결정질 암석 내 균열의 역학적 거동 모델링: 국제공동연구 DECOVALEX-2023 Task G(Benchmark Simulation))

  • Park, Jung-Wook;Park, Chan-Hee;Yoon, Jeoung Seok;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.573-590
    • /
    • 2020
  • This study presents the current status of DECOVALEX-2023 project Task G and our research results so far. Task G, named 'Safety ImplicAtions of Fluid Flow, Shear, Thermal and Reaction Processes within Crystalline Rock Fracture NETworks (SAFENET)' aims at developing a numerical method to simulate the fracture creation and propagation, and the coupled thermohydro-mechanical processes in fracture in crystalline rocks. The first research step of Task G is a benchmark simulation, which is designed for research teams to make their modelling codes more robust and verify whether the models can represent an analytical solution for displacements of a single rock fracture. We reproduced the mechanical behavior of rock and embedded single fracture using a three-dimensional grain-based distinct element model for the simulations. In this method, the structure of the rock was represented by an assembly of rigid tetrahedral grains moving independently of each other, and the mechanical interactions at the grains and their contacts were calculated using 3DEC. The simulation results revealed that the stresses induced along the embedded fracture in the model were relatively low compared to those calculated by stress analysis due to stress redistribution and constrained fracture displacements. The fracture normal and shear displacements of the numerical model showed good agreement with the analytical solutions. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated using various experiments in a further study.

A Boundary Element Analysis for Damage and Failure Process of Brittle Rock using ERACOD (FRACOD를 이용한 취성 암석의 손상 및 파괴에 대한 경계요소 해석)

  • ;Baotang Shen;Ove Stephansson
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.248-260
    • /
    • 2004
  • Damage in brittle rock due to stress increase starts from initiation of microcracks, and then results in failure by forming macro failure planes due to propagation and coalescence of these discrete cracks. Conventionally, continuum approaches using macro-failure criteria or a number of elasto-plastic models have been major solution to implement rock damage and failure. However, actual brittle failure processes can be better described in phenomenological approach if initiation and propagation of discrete fractures are explicitly considered. This study presents damage and failure process of rock using a boundary element code, FRACOD, which has been developed to model fracturing process of rocks. Through a series of numerical uniaxial compressive tests, the feasibility of the developed model was verified, and realistic rock failure process was reproduced considering scale effects in rocks. In addition, the fracturing process and the corresponding rock damage in the vicinity of deep shaft in rock mass were presented as an application of this approach. This approach will be expected to contribute to finding better engineering solutions for the analysis of stability problems in brittle rock masses.

Geochemical Modeling on Water-caprock-gas Interactions within a CO2 Injected in the Yeongil Group, Pohang Basin, Korea (포항분지 영일층군 내 이산화탄소 주입에 의한 물-덮개암-가스 반응에 대한 지화학적 모델링)

  • Kim, Seon-ok;Wang, Sookyun;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.69-76
    • /
    • 2021
  • This study is to identify the mineralogical properties of caprock samples from drilling cores of the Pohang basin, which is the research area for the demonstration-scale CO2 storage project in Korea. The interaction of water-rock-gas that can occur due to CO2 injection was identified using geochemical modeling. Results of mineralogical studies, together with petrographic data of caprock and data on the physicochemical parameters of pore water were used for geochemical modeling. Modelling was carried out using the The Geochemist's Workbench 14.0.1 geochemical simulator. Two steps of modeling enabled prediction of immediate changes in the caprocks impacted by the first stage of CO2 injection and the assessment of long-term effects of sequestration. Results of minerlaogical analysis showed that the caprock samples are mainly composed of quartz, K-feldspar, plagioclase and a small amount of pyrite, calcite, kaolinite and montmollonite. After the injection of carbon dioxide, the porosity of the caprock increased due to the dissolution of calcite, and dawsonite and chalcedony were precipitated as a result of the dissolution of albite and k-feldspar. In the second step after the injection was completed, the precipitation of dawsonite and chalcedony occurred as a result of dissolution of calcite and albite, and the pH was increased due to this reaction. Results of these studies are expected to be used as data to quantitatively evaluate the efficiency of mineral trapping capture in long-term storage of carbon dioxide.

A Study on Characteristics of Jointed Rock Masses and Thermo-hydro-mechanical Behavior of Rock Mass under High Temperature (방사성 폐기물 저장을 위한 불연속 암반의 특성 및 고온하에서의 암반의 수리열역학적 상호작용에 관한 연구)

  • 이희근;김영근;이희석
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.184-193
    • /
    • 1998
  • In order to dispose radioactive wastes safely, it is needed to understand the mechanical, thermal, fluid behavior of rockmass and physico-chemical interactions between rockmass and water. Also, the knowledge about mechanical and hydraulic properties of rocks is required to predict and to model many conditions of geological structure, underground in-situ stress, folding, hot water interaction, intrusion of magma, plate tectonics etc. This study is based on researches about rock mechanics issues associated with a waste disposal in deep rockmass. This paper includes the mechanical and hydraulic behavior of rocks in varying temperature conditions, thermo-hydro-mechanical coupling analysis in rock mass and deformation behavior of discontinuous rocks. The mechanical properties were measured with Interaken rock mechanics testing systems and hydraulic properties were measured with transient pulse permeability measuring systems. In all results, rock properties were sensitive to temperature variation.

  • PDF

[ $PFC^{3D}$ ] Modeling of Stress Wave Propagation Using The Hopkinson's Effect ($PFC^{3D}$ 상에서의 홉킨슨 효과를 이용한 응력파의 전파모델링)

  • Choi Byung-Hee;Ryu Chang-ha
    • Explosives and Blasting
    • /
    • v.23 no.3
    • /
    • pp.27-42
    • /
    • 2005
  • An explosion modeling technique was developed by using the spherical discrete element code, $PFC^{3D}$, which can be used to model the dynamic stress wave propagation phenomenon. The modeling technique is simply based on an idea that the explosion pressure should be applied to a $PFC^{3D}$ particle assembly not in the form of an external force (body force), but in the form of a contact force (surface force). The stress wave propagation modeling was conducted by simulating the experimental approach based on the Hopkinson's effect combined with the spatting phenomenon that had previously been developed to determine the dynamic tensile strength of Inada granite. As a result, the stress wave velocity obtained by the proposed modeling technique was 4167 m/s, which is merely $3\%$ lower than the actual wave velocity of 4300 m/s for an Inada granite.