DOI QR코드

DOI QR Code

Grain-Based Distinct Element Modelling of the Mechanical Behavior of a Single Fracture Embedded in Rock: DECOVALEX-2023 Task G (Benchmark Simulation)

입자기반 개별요소모델을 통한 결정질 암석 내 균열의 역학적 거동 모델링: 국제공동연구 DECOVALEX-2023 Task G(Benchmark Simulation)

  • Received : 2020.12.14
  • Accepted : 2020.12.22
  • Published : 2020.12.31

Abstract

This study presents the current status of DECOVALEX-2023 project Task G and our research results so far. Task G, named 'Safety ImplicAtions of Fluid Flow, Shear, Thermal and Reaction Processes within Crystalline Rock Fracture NETworks (SAFENET)' aims at developing a numerical method to simulate the fracture creation and propagation, and the coupled thermohydro-mechanical processes in fracture in crystalline rocks. The first research step of Task G is a benchmark simulation, which is designed for research teams to make their modelling codes more robust and verify whether the models can represent an analytical solution for displacements of a single rock fracture. We reproduced the mechanical behavior of rock and embedded single fracture using a three-dimensional grain-based distinct element model for the simulations. In this method, the structure of the rock was represented by an assembly of rigid tetrahedral grains moving independently of each other, and the mechanical interactions at the grains and their contacts were calculated using 3DEC. The simulation results revealed that the stresses induced along the embedded fracture in the model were relatively low compared to those calculated by stress analysis due to stress redistribution and constrained fracture displacements. The fracture normal and shear displacements of the numerical model showed good agreement with the analytical solutions. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated using various experiments in a further study.

본 논문에서는 국제공동연구인 DECOVALEX-2023 프로젝트 Task G의 연구 현황과 현재까지 수행된 benchmark 해석 결과를 소개하였다. Task G의 명칭은 'Safety ImplicAtions of Fluid Flow, Shear, Thermal and Reaction Processes within Crystalline Rock Fracture NETworks(SAFENET)'로, 결정질 암반 내 균열의 생성과 성장 메커니즘 및 균열에서 발생하는 열-수리-역학적 복합거동을 해석하기 위한 수치해석기법을 개발하는 데에 목표가 있다. Task G의 첫 번째 연구 테마는 결정질 암석 내 단일 균열의 역학적 거동에 대한 해석해(analytical solution)를 바탕으로 각 연구팀의 수치모델링기법을 개발 및 검증하는 Benchmark 해석이다. 본 연구에서는 3차원 입자기반 개별요소모델을 이용하여 단일 균열을 포함한 암석의 역학적 거동 특성을 모델링하고자 하였다. 이 모델에서는 상호독립적으로 거동하는 개별입자의 집합체를 통해 암석의 구조적 특징을 모사하고, 입자와 입자간 접촉에서 발생하는 역학적 거동을 개별요소해석모델인 3DEC을 통해 계산하게 된다. 해석 결과, 도메인의 경계응력으로 인해 균열에 유도되는 수직응력과 전단응력 수준은 변위 구속과 응력 재배치로 인해 이론적인 수치보다 낮게 나타났다. 그러나 수치모델에서 계산된 수직변위와 전단변위는 실제 균열의 유도 응력을 통해 추정된 해석해와 비교할 때 상당히 유사한 결과를 보였으며 균열의 응력-변위 관계를 합리적으로 재현할 수 있음을 확인하였다. 본 연구의 해석모델은 Task G에 참여하는 국외 연구팀들과의 의견 교류와 워크숍을 통해 지속적으로 개선하는 한편, 향후 다양한 조건의 실내시험에 적용하여 타당성을 검증할 예정이다.

Keywords

Acknowledgement

The authors appreciate and thank the DECOVALEX-2023 Funding Organizations, Andra, BASE, BGE, BGR, CAS, CNSC, COVRA, US DOE, ENRESA, ENSI, JAEA, KAERI, NWMO, RWM, SÚRAO, SSM and Taipower for their financial and technical support of the work described in this paper. The statements made in the paper are, however, solely those of the authors and do not necessarily reflect those of the Funding Organizations. This research was also supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM, GP2020-010) funded by the Ministry of Science and ICT, Korea.

References

  1. Birkholzer, J. T., Tsang, C. F., Bond, A. E., Hudson, J. A., Jing, L., Stephansson, O., 2019. 25 years of DECOVALEX-Scientific advances and lessons learned from an international research collaboration in coupled subsurface processes. International Journal of Rock Mechanics and Mining Sciences 122, 103995. https://doi.org/10.1016/j.ijrmms.2019.03.015
  2. Birkholzer, J. T., Bond, A. E., 2020. DECOVALEX-2023 Introduction. Presented in DECOVALEX-2023 2nd Workshop, November 16-20 2020, Virtual conference.
  3. Cundall, P. A., 1988. Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 25(3), 107-116. https://doi.org/10.1016/0148-9062(88)92293-0
  4. Cundall, P. A., Strack, O. D., 1979. A discrete numerical model for granular assemblies. Geotechnique 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  5. Fu, T. F., Xu, T., Heap, M. J., Meredith, P. G., Mitchell, T. M., 2020. Mesoscopic time-dependent behavior of rocks based on three-dimensional discrete element grain-based model. Computers and Geotechnics 121, 103472. https://doi.org/10.1016/j.compgeo.2020.103472
  6. Geuzaine, C., Remacle, J. F., 2009. Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. International journal for numerical methods in engineering 79(11), 1309-1331. https://doi.org/10.1002/nme.2579
  7. Ghazvinian, E., Diederichs, M. S., Quey, R., 2014. 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing. Journal of Rock Mechanics and Geotechnical Engineering 6(6), 506-521. https://doi.org/10.1016/j.jrmge.2014.09.001
  8. Gu, D. Huang, D., 2016. A complex rock topple-rock slide failure of an anaclinal rock slope in the Wu Gorge, Yangtze River, China. Engineering Geology 208. 165-180. https://doi.org/10.1016/j.enggeo.2016.04.037
  9. Hu, Z., Xu, N., Li, B., Xu, Y., Xu, J., Wang, K., 2020. Stability Analysis of the Arch Crown of a Large-Scale Underground Powerhouse During Excavation. Rock Mechanics and Rock Engineering, 1-9.
  10. Itasca Consulting Group Inc. 2014. UDEC (Universal Distinct Element Code) version 6.0. Minneapolis: Itasca CGI.
  11. Itasca Consulting Group Inc., 2017. 3DEC (3 Dimensional Distinct Element Code) version 5.2. Minneapolis: Itasca CGI.
  12. Kolditz, O., McDermott, C., Yoon, J. S., 2020. DECOVALEX-2023 Task G Introduction. Presented in DECOVALEX-2023 2nd Workshop, November 16-20 2020, Virtual conference.
  13. Lan, H.X., Martin, C.D., Hu, B., 2010. Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. Journal of Geophysical Research: Solid Earth 115, B1.
  14. Lee, C., Kim, T., Lee, J., Park, J. W., Kwon, S., Kim, J. S., 2020. Introduction of International Cooperation Project, DECOVALEX from 2008 to 2019. Tunnel and Underground Space 30(4), 271-305. https://doi.org/10.7474/TUS.2020.30.4.271
  15. Li, A., Dai, F., Xu, N., Gu, G., Hu, Z., 2019. Analysis of a complex flexural toppling failure of large underground caverns in layered rock masses. Rock Mechanics and Rock Engineering 52(9), 3157-3181. https://doi.org/10.1007/s00603-019-01760-5
  16. McDermott, C. I., Fraser-Harris, A., Sauter, M., Couples, G. D., Edlmann, K., Kolditz, O., Lightbody, A., Somerville, J., Wang, W., 2018. New experimental equipment recreating geo-reservoir conditions in large, fractured, porous samples to investigate coupled thermal, hydraulic and polyaxial stress processes. Scientific reports 8(1), 1-12.
  17. Park, J. W., Park, C., Song, J. W., Park, E. S., Song, J. J., 2017. Polygonal grain-based distinct element modeling for mechanical behavior of brittle rock. International Journal for Numerical and Analytical Methods in Geomechanics 41(6), 880-898. https://doi.org/10.1002/nag.2634
  18. Pollard, D. D., Segall, P., 1987. Theoretical displacements and stresses near fractures in rock: with applications to faults, joints, veins, dikes, and solution surfaces. In: Fracture mechanics of rock. pp. 277-347.