• Title/Summary/Keyword: 암석 균열

Search Result 261, Processing Time 0.03 seconds

Analysis for the Crack Characteristics of Rock and Concrete using Strain and Elastic Wave (변형률과 탄성파를 이용한 암석 및 콘크리트 균열특성분석)

  • Choi, Young Chul;Kim, Jin Seop;Park, Tae Jin;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.253-262
    • /
    • 2017
  • The purpose of this paper is to analyze the crack characteristics by performing the compression test of the rock and concrete specimens. The experiments are carried out by using strain sensors which can measure length change and the AE sensor which can detect the elastic wave from the crack. The crack volumetric strain calculated from measured strain is shown in different shape on the rock and the concrete specimens. This is because the specimens have a different degree of brittleness. However, the crack volumetric strain associated with the fracture and damage was similar to accumulated AE energy of the two specimens. This means that the AE sensor can assess damage in real time without damaging the structure.

카르스트 지형의 환경 보전

  • 오종우
    • Proceedings of the Speleological Society Conference
    • /
    • 1996.09a
    • /
    • pp.77-78
    • /
    • 1996
  • 카르스트는 특이한 수문학적 용식지형이며, 암석의 높은 용식성으로 인해 발달된 암석의 공극(1차적 삼투)과 암석의 구조적 변형인 절리면, 균열면, 단층면, 층리면 등(2차적 삼투)의 확장으로 인하여 발생되어진 경관을 총칭한 것이다. 암석의 용식성만으로 카르스트가 형성된다는 것을 설명하기는 쉽지 않다. 왜냐하면 암석의 구조적인 특성이 중요한 인자이기 때문이다.(중략)

  • PDF

A Study on the Provenance of the Stones and the Surface Cracks in the Suljeongri East Three-story Stone Pagoda, Changnyeong, Korea (창녕 술정리 동삼층석탑 석재의 원산지 해석 및 표면균열에 관한 연구)

  • Kim, Jae-Hwan;Jwa, Yong-Joo
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.283-292
    • /
    • 2010
  • The Suljeongri east three-story stone pagoda in Changnyeong (National Treasure No. 34) has been damaged mainly by lots of cracks. The stones used for this pagoda are medium-granied equigranular pinkish biotite granite. Measured magnetic susceptibility values are of from 2 to 9 (${\times}10^{-3}$ SI unit). From the ${\gamma}$-ray spectrometer mesurement K, eU, and eTh contents of the stones are 3 to 7%, 8 to 19 ppm, and 11 to 35 ppm, respectively. Comparing the petrographical and chemical characteristics between the stones of the pagoda and the country rocks near Suljeongri, it is suggested that the most similar rock could be equigranular biotite granite in the western slope of the Mt. Hwawangsan. Vertical, horizontal and diagonal cracks are intensely developed at the lower part of the stone pagoda. Biotite granite has intrinsic microcracks defined as rift and grain rock cleavages. Both rock cleavages are assumed to have led to the crack growth and consequent mechanical damage of the pagoda. It seems that vertical cracks have been grown parallel to the principal compressional stress, and that horizontal cracks to the reacting tensional stress. Diagonal cracks seems likely to have been resulted from conjugate rift and grain rock cleavages.

Subcritical crack growth in rocks in an aqueous environment (수성환경에서 암석 내의 임계하 균열성장 연구)

  • Nara, Yoshitaka;Takada, Masafumi;Igarashi, Toshifumi;Hiroyoshi, Naoki;Kaneko, Katsuhiko
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.163-171
    • /
    • 2009
  • Subcritical crack growth is one of the main causes of time-dependent fracturing in rock. In the present study, we investigated subcritical crack growth in rock in distilled water (pH = 5.7) and in an aqueous solution of sodium hydroxide (NaOHaq, pH = 12), comparing the results to those in air. We also investigated the effect of the pH in an aqueous environment. We used andesite and granite for all our tests. We determined the relationship between the crack velocity and the stress intensity factor using the double-torsion test under conditions of controlled temperature. We showed that crack velocities in water were higher than those in air, in agreement with other research results indicating that crack velocity increases in water. When we compared our results for NaOHaq with those for water, however, we found that the crack velocity at the same stress intensity factor did not change even though the pH of the surrounding environment was different. This result does not agree with the accepted understanding that hydroxide ions accelerate subcritical crack growth in rocks. We concluded that the pH at the crack tip influences subcritical crack growth, and not the bulk pH, which has little effect.

A Study on Subcritical Crack Growth Parameters in Rock-like Material under Monotonic and Cyclic Loading (단조 및 반복하중 하에서의 모사 암석 시료의 임계하 균열성장 지수에 관한 연구)

  • Ko, Tae Young
    • Tunnel and Underground Space
    • /
    • v.29 no.2
    • /
    • pp.124-134
    • /
    • 2019
  • Subcritical crack growth in rock material can occur under monotonic and cyclic loading. Subcritical crack growth plays an important role in evaluating the long-term stability of structures in rocks. This paper presents the results of studies conducted to determine subcritical crack growth parameters under monotonic and cyclic loading in rock-like material. The constant stress rate method was employed for monotonic loading. The subcritical crack growth parameter of n under cyclic loading was determined by the relation between the rate of crack growth per cycle and stress intensity factor range. The specimens contained pre-existing flaws with 45 and 60 degrees of inclination angle and flaws spacing and continuity were varied to arrange crack growth in shear or tensile manner. The results show that the parameter of n is almost constant regardless of the applied load conditions such as monotonic and cyclic or shear and tension.

An Experimental Study on the Determination of Damage Thresholds in Rock at Different Stress Levels (응력수준에 따른 암석의 손상기준 결정에 관한 실험적 연구)

  • Chang Soo-Ho;Lee Chung-In
    • Explosives and Blasting
    • /
    • v.23 no.4
    • /
    • pp.31-44
    • /
    • 2005
  • In highly stressed conditions, the excavation damage zone induced by stress redistribution and disturbance must be evaluated after tunnel excavation. Therefore, the investigation of stress-induced deformation and fracture in rock is indispensable. In this study, fracture and damage mechanisms of rock induced by the accumulation of microcracks were investigated by the moving point regression technique as well as acoustic emission measured during uniaxial compression tests. Especially, the modified procedures to determine damage thresholds more systematically were newly proposed, and successfully applied to rock. From experiments, crack initiation and track damage stress levels were estimated to be $33{\~}36\%$ and $84{\~}89\%$ of uniaxial compressive strength respectively, for both of Hwangdeung granite and Yeosan marble. However, the normalized crack closure stress level for Yeosan marble was much higher than for Hwangdeung granite. In addition, the largest proportion of total axial strain in Hwangdeung granite was attributable to elastic deformation and initial microcracking. However, the greatest part of axial deformation in Yeosan marble arose from initial crack closure and unstable cracking. Finally, it was seen that unstable cracking after the crack damage stress level played a key part in the lateral deformation in rocks under uniaxial compression.

Grain-Based Distinct Element Modelling of the Mechanical Behavior of a Single Fracture Embedded in Rock: DECOVALEX-2023 Task G (Benchmark Simulation) (입자기반 개별요소모델을 통한 결정질 암석 내 균열의 역학적 거동 모델링: 국제공동연구 DECOVALEX-2023 Task G(Benchmark Simulation))

  • Park, Jung-Wook;Park, Chan-Hee;Yoon, Jeoung Seok;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.573-590
    • /
    • 2020
  • This study presents the current status of DECOVALEX-2023 project Task G and our research results so far. Task G, named 'Safety ImplicAtions of Fluid Flow, Shear, Thermal and Reaction Processes within Crystalline Rock Fracture NETworks (SAFENET)' aims at developing a numerical method to simulate the fracture creation and propagation, and the coupled thermohydro-mechanical processes in fracture in crystalline rocks. The first research step of Task G is a benchmark simulation, which is designed for research teams to make their modelling codes more robust and verify whether the models can represent an analytical solution for displacements of a single rock fracture. We reproduced the mechanical behavior of rock and embedded single fracture using a three-dimensional grain-based distinct element model for the simulations. In this method, the structure of the rock was represented by an assembly of rigid tetrahedral grains moving independently of each other, and the mechanical interactions at the grains and their contacts were calculated using 3DEC. The simulation results revealed that the stresses induced along the embedded fracture in the model were relatively low compared to those calculated by stress analysis due to stress redistribution and constrained fracture displacements. The fracture normal and shear displacements of the numerical model showed good agreement with the analytical solutions. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated using various experiments in a further study.

Petrological Characteristics and Deterioration phenomena of the rocks consisting the Naju-Dongmunoi-Seogdanggan(Stone Stele) (나주동문외석당간 구성암석의 암석학적 특징과 훼손양상)

  • Lee, Sang-Hun
    • Journal of Conservation Science
    • /
    • v.19
    • /
    • pp.57-66
    • /
    • 2006
  • The rock consisting the Naju-Dongmunoi-Seogdanggan (Stone Stele)(Treasure number 49) is biotite granite of medium to coarse grains which might be taken from nearby area. The rock is mainly composed of quartz, plagioclase, alkali feldspar and biotite. Due to strong weathering grail peel-off and surface exfoliation are well developed. The rock surface is changed into pale brown or pale black colors according to weathering, organism and weathering product of iron band. Major deterioration phenomena are grain peel-off, surface exfoliation, cracks and damage which may be originally classified into weathering, effect of weathering product of iron band, organisms, structural unstabilities and impact.

  • PDF

Characteristics of the Rock Cleavage in Jurassic Granite, Hapcheon (합천지역의 쥬라기 화강암에 발달된 결의 특성)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.219-230
    • /
    • 2011
  • Jurassic granite from Hapcheon was analysed with respect to the characteristics of the rock cleavage. The phases of distribution of microcracks were well evidenced from the enlarged photomicrographs(${\times}6.7$) of the thin section. The planes of principal set of microcracks are parallel to the rift plane and those of secondary set are parallel to the grain plane. These rift and grain microcracks are mutually near-perpendicular on the hardway planes. Consequently the rock cleavage of Jurassic granite from the studied quarry can be related to the preferred orientation of microcracks. Microcrack parameters such as number, length and density show an order of rift > grain > hardway. These results indicate a relative magnitude of the rock cleavage. Meanwhile, brazilian tensile strengths were measured with respect to the six directions. The results revealed a strong correlation between mechanical property with microcrack parameters.

Permeability Characteristics related with Damage Process in Granites (화강암의 손상과정에 따른 투수계수 특성 연구)

  • 정교철;채병곤;김만일;서용석
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.315-325
    • /
    • 2001
  • A series of laboratory tests was conducted to observe damage process by stress and to understand characteristics of permeability related with rock damage. Rock specimens which were composed of the Cretaceous medium grained granites were experienced of damage stress between 65% and 95% of the compressive strength. Rock deformation by damage process was identified with the elastic wave velocity test. Relationship between rock damage and permeability change was also analyzed by water injection test in the laboratory. According to the results of the tests, damage tends to be occurred from stress level of 80% of the compressive strength and it reduces elastic wave velocity. The damaged specimens with stress more than 80% of the compressive strength showed crack density more than 0.6 and persistent length with good connectivity of cracks. They also have higher permeability than that of specimens with crack density less than 0.6. Considered with the above results, the rock specimens used in this study were fully damaged from stress level of 80% of the compressive strength. Crack initiation and propagation by damage caused good connectivity of cracks through rock specimen. These damage process, therefore, brought high permeability coefficient through water flow conduit in the rock specimen.

  • PDF