• Title/Summary/Keyword: 암석절리

Search Result 232, Processing Time 0.029 seconds

Analysis of Slope Stability and Property of Discontinuities Using Square-Inventory Method: The Changri area, Boeun-Gun, Chungbuk (정면적법을 이용한 불연속면의 특성화 및 사면안정해석: 충북 보은군 내북면 창리 지역)

  • Choi, Byoung-Ryol;Cheong, Sang-Won
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.20-32
    • /
    • 2008
  • The study shows a method called a square-inventory method, which is a better and faster method than scanline survey and window method for an analysis of slope stability. The study area is located in the Changri area, Boeun-Gun, Chungbuk, and consists of many formations of the Okcheon Supergroup. Various types of failure are observed from the phyllite including the rocks in the study area. The physical properties of meta-sedimentary rocks are that minerals of the rocks are composed of microcrystalline quartz and sericite, which are arranged parallel to bedding (or schistosity) and crenulation cleavage. Therefore, such properties affect geotechnical ones of the rock. The slope stability are analyzed by selecting 3 areas, each of which are divided into 2 or 3 slopes of $1m{\times}1m$ area that represent each of 3 investigation sites. The possibility of wedge and toppling failure is very high in all 3 areas by using square-inventory method. Although possibility of plane failure is weak in the investigation site 2, the plane failures are frequently found from the slope of site 2. The bedding (or schistosity) plane and cleavage, another types of discontinuity coexist in meta-sedimentary rocks uulike igneous rocks, and therefore are important factors to be considered together with joint structures in th ε analysis of slope stability.

Experimental Study for determining the Basic Friction Angle of the Rock Joint (암석 절리면의 기본마찰각 결정을 위한 실험적 고찰)

  • Jang, Hyun-Sic;Jeong, Jong-Taek;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.447-460
    • /
    • 2016
  • Samples of Hangdeung granite and Berea sandstone containing sliding planes were prepared by saw-cutting and polishing using #100 or #600 grinding powders. Their basic friction angles were then measured directly in direct shear tests and triaxial compression tests, and also in tilt tests, which measure the angles indirectly. Although the angles measured by the direct methods were generally accurate, those measured along certain planes were greatly different from the others depending on the condition of the plane. The tilt tests yielded similar angles regardless of the sliding plane condition or the rock type; however, the error range was relatively wide. Sliding planes polished by the grinding powders yielded more accurate results than those cut by the saw and tested without polishing, as polishing ensured consistent conditions among all the planes. Sliding planes polished using #100 grinding powder yielded better results than polishing with #600 grinding powder. Therefore, the basic friction angles measured along the sliding planes polished using #100 grinding powder, as obtained in direct shear and triaxial compression tests, were the most reliable. The angle could also be measured satisfactorily by tilt testing along sliding planes polished with #100 grinding powder.

Petrology on the Late Miocene Basalts in Goseong-gun, Gangwon Province (강원도 고성군 일대의 후기 마이오세 현무암의 암석학적 연구)

  • Koh Jeong Seon;Yun Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.26 no.1
    • /
    • pp.78-92
    • /
    • 2005
  • Petrographical and petrochemical analyses for late Miocene basalts in Goseong-gun area. Gangwon province, were carried out to interpret the characteristics and the origin of magma. The basaltic rocks occurred as plug-dome in the summit of several small mountain and developed columnar jointing with pyroxene-megacryst bearing porphyritic texture. And the basalt contains xenoliths of biotite granite (basement rocks), gabbro (lower crustal origin) and Iherzolite(upper mantle origin). The basalts belong to the alkaline basalt field in TAS diagram and partly belong to picrobasalt and trachybasalt field. On the tectonomagmatic discrimination diagram f3r basalt in the Goseong-gun area. they fall into the fields for the within plate and oceanic island basalt. The characteristics of trace elements and REEs shows that primary magma for the basalt magma would have been derived from partial melting of garnet-peridotite mantle. This late Miocene basalt volcanism is related to the hot spot within the palte.

Petrochemical Characteristics of the Duibaejae Volcanic Rocks from Goseong, Gangwon-do, Korea (강원도 고성 뒤배재 화산암의 암석화학적 특성)

  • Kim, Hwa Sung;Kil, Youngwoo;Lee, Moon Won
    • Journal of the Korean earth science society
    • /
    • v.34 no.2
    • /
    • pp.109-119
    • /
    • 2013
  • Duibaejae basalts from Goseong, Gangwon-do, are divided into the lower basalt and the upper basalt depending on the properties, such as occurrence, mineral compositions, and major and trace compositions of the basalts. The lower basalts have characteristics of agglomerate rocks as well as contain, crustal and mantle xenoliths, and olivine, pyroxene, and plagioclase xenocrysts. The upper basalts with columnar joints contain relatively more mantle xenolith and olivine xenocryst than the lower basalts. The major and trace element compositions suggest that the composition of the upper basalts is close to primary magma composition. Enrichment and depletion patterns of the trace and the rare-earth elements of the lower basalts are similar to those of the upper basalts, whereas the lower basalts are more LREE enriched than the upper basalts. The source magmas of the lower and upper basalts from Duibaejae volcanic edifice were generated from about 0.8-1.2% and 3.7-4.0% batch melting of garnet peridotite, respectively. The abundance of granite xenolith, and plagioclase and quartz xenocrysts with reaction rim indicates that the lower basalts, compared with upper basalts, might have been assimilated with the crustal materials during ascending to surface.

Anisotropy of Magnetic Susceptibility (AMS) of Granitic Rocks in the Eastern Region of the Yangsan Fault (양산단층 동편 화강암질암의 대자율 이방성(AMS))

  • Cho, Hyeong-Seong;Son, Moon;Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.171-189
    • /
    • 2007
  • A study of anisotropy of magnetic susceptibility (AMS) was undertaken on Cretaceous granitic, volcanic and sedimentary rocks in the eastern region of the Yangsan fault, southeast Korea. A total of 542 independently oriented core samples collected form 77 sites were studied. The main magnetic mineral in granitic rocks is magnetite according to the magnitude of bulk susceptibility, high-temperature susceptibility variation and isothermal remanent magnetization. Both of magnetic lineation and foliation with NE-SW trends are revealed in the granitic rocks, while volcanic rocks show scattered directions and sedimentary rocks show only load foliation parallel to the bedding planes. The following evidences read to the conclusion that both magnetic fabrics in the granitic rocks have been obtained by a tectonic stress before full solidification of the magma: (i) A fully hardened granitic rocks would get hardly any fabric, (ii) Difference of the magnetic fabric trends with those of the geological structures in the granitic rocks themselves formed by brittle deformation after solidification (e.g. patterns of small-faults and joints), (iii) Kinking of biotite and undulose extinction in quartz observed under the polarizing microscope, (iv) Discordance of magnetic fabrics in the granitic rocks with those in the surrounding rocks. The NE-SW trend of the magnetic foliations suggests a NW-SE compressive stress of nearly contemporaneous with the emplacement of the granitic rocks. The compression should have caused a sinistral strike-slip movement of the Yangsan Fault considering the trend of the latter. As the age of the granitic rocks in the study area is reported to be around $60\sim70$ Ma, it is concluded that the Yangsan fault did the sinistral strike-slip movement during this time (L. Cretaceous Maastrichtian - Cenozoic Paleocene).

A Study on the Characteristics of Dynamic Elastic Modulus in GyeongGi Gneiss Complex by Down Hole Test (하향식 탄성파를 통한 경기 편마암의 동탄성 특성연구)

  • Lee, Byok-Kyu;Lee, Su-Gon
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.371-379
    • /
    • 2008
  • In this study, seismic elastic wave and dynamic elastic modulus properties are investigated by down-hole seismic tests that were applied to the 11 gneiss area. The research results show that the realtionship between the two properties are $V_s=0.5589{\times}V_p$ in gneiss. The relationship between the two properties are separated into two groups. Group 1 is influenced mainly by the specific gravity of rock, but group 2 is influenced mainly by the joint aperture. As weathering progresses, group 1 clearly shows a decreasing tendency. In fresh and slightly weathered rock-mass, correlations between $V_p$ and dynamic elastic modulus is expressed in linear line but in moderately-highly weathered rock-mass, correlations between $V_p$ and dynamic elastic modulus is expressed curve as a quadratic function. Correlations between $V_s$ and dynamic elastic modulus are analyzed similar with a $V_p$ case.

A study on landforms in Gosung, Gangwon province (강원도 고성 일대의 지형 경관에 대한 연구)

  • Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.3
    • /
    • pp.65-81
    • /
    • 2011
  • The landforms based on granite and basalt in Gosung, Gangwon province were analysed. Some part of this area experienced volcanic activities while most of the area was experiencing erosion of weathered mantle(saprolites) of mesoic granites during cenozoic period. Two different lithologies affect the mode of landscape evolution. The basalt covers the mountain tops as a 'cap rock' with flat surfaces. It shows relatively fresh rock surface with cliff or steep slops at the boundary with weathered granite. The blocks detached from the cliff accumulated at the foot of the cliff(talus) or moved and filled the valley(block streams). These debris slopes cover the deeply weathered granites. In the case of Oeum Mt. and Duibaekjae, the number of point of origin of the basalt flow is not clear. The orientation of blocks from block stream coincides with slope aspects and it can be assumed that the bolcks were moved by solifluction. The landscape change of the block streams are dominated by removal of weathered material from beneath of the valley rather than removal of bedrock blocks themselves.

Rock Slope Stability Investigations Conducted on the Road Cut in Samrangjin-Miryang Area (삼량진-밀양 지역에 위치한 도로 절취사면에 대한 사면안정 연구)

  • Um Jeong-Gi;Kang Taeseung;Hwang Jin Yeon
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.305-317
    • /
    • 2005
  • This study addresses the preliminary results of rock slope stability analyses including hazard assessments for slope failure conducted on the selected sections of rural road cut slope which are about 4 km long. The study area is located in the Mt. Chuntae northeast of Busan and mainly composed of Cretaceous rhyolitic ash-flow tuff', fallout tuff, rhyolitc and andesite. The volcanic rock mass in the area has a number of discontinuities that produce a potentially unstable slope, as the present cut slope is more than 70 degrees in most of the slope sections. Discontinuity geometry data were collected at selected 8 scanline sections and analyzed to estimate important discontinuity geometry parameters to perform rock slope kinematic and block theory analyses. Kinematic analysis for plane sliding has resulted in maximum safe slope angles greater than $65^{\circ}$ for most of the discontinuities. For most of the wedges, maximum safe cut slope angles greater than $45^{\circ}$ were obtained. Maximum safe slope angles greater than 80" were obtained fur most of the discontinuities in the toppling case. The block theory analysis resulted in the identification of potential key blocks (type II) in the SL4, SL5, SL6 and SL8 sections. The chance of sliding taking place through a type ll block under a combined gravitational and external loading is quite high in the investigated area. The results support in-field observations of a potentially unstable slope that could become hazardous under external forces. The results obtained through limit equilibrium slope stability analyses show how a stable slope can become an unstable slope as the water pressure acting on joints increases and how a stable slope under Barton's shear strength criterion can fail as the worst case scenario of using Mohr-Coulomb criterion.

Internal Structure and Movement History of the Keumwang Fault (금왕단층의 내부구조 및 단층발달사)

  • Kim, Man-Jae;Lee, Hee-Kwon
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.211-230
    • /
    • 2016
  • Detailed mapping along the Keumwang fault reveals a complex history of multiple brittle reactivations following late Jurassic and early Cretaceous ductile shearing. The fault core consists of a 10~50 m thick fault gouge layer bounded by a 30~100 m thick damaged zone. The Pre-cambrian gneiss and Jurassic granite underwent at least six distinct stages of fault movements based on deformation environment, time and mechanism. Each stage characterized by fault kinematics and dynamics at different deformation environment. Stage 1 generated mylonite series along the Keumwang shear zone by sinistral ductile shearing during late Jurassic and early Cretaceous. Stage 2 was a mostly brittle event generating cataclasite series superimposed on the mylonite series of the Keumwang shear zone. The roundness of pophyroclastes and the amount of matrix increase from host rocks to ultracataclasite indicating stronger cataclastic flow toward the fault core. At stage 3, fault gouge layer superimposed on the cataclasite generated during stage 2 and the sedimentary basins (Umsung and Pungam) formed along the fault by sinistral strike-slip movement. Fragments of older cataclasite suspended in the fault gouge suggest extensive reworking of fault rocks at brittle deformation environments. At stage 4, systematic en-echelon folds, joints and faults were formed in the sedimentary basins by sinistral strike-slip reactivation of the Keumwang fault. Most of the shearing is accommodated by slip along foliations and on discrete shear surfaces, while shear deformation tends to be relatively uniformly distributed within the fault damage zone developed in the mudrocks in the sedimentary basins. Fine-grained andesitic rocks intruded during stage 4. Stage 5 dextral strike-slip activity produced shear planes and bands in the andesitic rocks. ESR(Electron Spin Resonance) dates of fault gouge show temporal clustering within active period and migrating along the strike of the Keumwang fault during the stage 6 at the Quaternary period.

Geosites, Geoheritages and Geotrails of the Hwaseong Geopark, the Candidate for Korean National Geopark (화성 국가지질공원 후보지의 지질명소, 지질유산 그리고 지오트레일)

  • Cho, Hyeongseong;Shin, Seungwon;Kang, Hee-Cheol;Lim, Hyoun Soo;Chae, Yong-Un;Park, Jeong-Woong;Kim, Jong-Sun;Kim, Hyeong Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.195-215
    • /
    • 2019
  • Geopark is a new system for development of the local economy through conservation, education, and tourism that is an area of scientific importance for the earth sciences and that has outstanding scenic values. The Hwaseong Geopark, the candidate for Korean National Geopark is composed of 10 geosites: Gojeongri dinosaur egg fossils, Ueumdo, Eoseom, Ddakseom, Goryeom, Jebudo, Baengmiri Coast, Gungpyeonhang, Ippado and Gukwado geosites. In this study, geosites, geoheritages, and geotrails of the Hwaseong Geopark were described in detail, and the value and significane as a geopark were also discussed. The geology of the Hwaseong Geopark area belonging to the Gyeonggi Massif consists of the Precambrian metamorphic and meta-sedimentary rocks, Paleozoic sedimentary and metamorphic rocks, Mesozoic igneous and sedimentary rocks, and Quaternary deposits, indicating high geodiversity. The Gojeongri Dinosaur Egg Fossils geosite, designated as a natural monument, has a geotrail including dinosaur egg nest fossils, burrows, tafoni, fault and drag fold, cross-bedding. Furthermore, a variety of infrastructures such as eco-trail deck, visitor center are well-established in the geosite. In the Ueumdo geosite, there are various metamorphic rocks (gneiss, schist, and phyllite) and geological structures (fold, fault, joint, dike, and vein), thus it has a high educational value. The Eoseom geosite has high academic value because of the orbicular texture found in metamorphic rocks. Also, various volcanic and sedimentary rocks belonging to the Cretaceous Tando Basin can be observed in the Ddakseom and Goryeom geosites. In the Jebudo, Baengmiri Coast, and Gungpyeonghang geosites, a variety of coastal landforms (tidal flat, seastacks, sand and gravel beach, and coastal dunes), metamorphic rocks and geological structures, such as clastic dikes and quartz veins can be observed, and they also provide various programs including mudflat experience to visitors. Ippado and Gukwado geosites have typical large-scale fold structures, and unique coastal erosional features and various Paleozoic schists can be observed. The Hwaseong Geopark consists of outstanding geosites with high geodiversity and academic values, and it also has geotrails that combine geology, geomorphology, landscape and ecology with infrastructures and various education and experience programs. Therefore, the Hwaseong Geopark is expected to serve as a great National Geopark representing the western Gyeonggi Province, Korea.