DOI QR코드

DOI QR Code

Experimental Study for determining the Basic Friction Angle of the Rock Joint

암석 절리면의 기본마찰각 결정을 위한 실험적 고찰

  • Jang, Hyun-Sic (Department of Geophysics, Kangwon National University) ;
  • Jeong, Jong-Taek (Korea Institute of Civil Engineering and Building Technology) ;
  • Jang, Bo-An (Department of Geophysics, Kangwon National University)
  • 장현식 (강원대학교 지질.지구물리학부) ;
  • 정종택 (한국건설기술연구원 지반연구소) ;
  • 장보안 (강원대학교 지질.지구물리학부)
  • Received : 2016.10.14
  • Accepted : 2016.12.03
  • Published : 2016.12.30

Abstract

Samples of Hangdeung granite and Berea sandstone containing sliding planes were prepared by saw-cutting and polishing using #100 or #600 grinding powders. Their basic friction angles were then measured directly in direct shear tests and triaxial compression tests, and also in tilt tests, which measure the angles indirectly. Although the angles measured by the direct methods were generally accurate, those measured along certain planes were greatly different from the others depending on the condition of the plane. The tilt tests yielded similar angles regardless of the sliding plane condition or the rock type; however, the error range was relatively wide. Sliding planes polished by the grinding powders yielded more accurate results than those cut by the saw and tested without polishing, as polishing ensured consistent conditions among all the planes. Sliding planes polished using #100 grinding powder yielded better results than polishing with #600 grinding powder. Therefore, the basic friction angles measured along the sliding planes polished using #100 grinding powder, as obtained in direct shear and triaxial compression tests, were the most reliable. The angle could also be measured satisfactorily by tilt testing along sliding planes polished with #100 grinding powder.

이 연구에서는 직접적으로 기본마찰각을 측정할 수 있는 직접전단시험과 삼축압축시험, 간접적으로 측정할 수 있는 기울임 시험을 이용하여 톱 절단면, #100 연마면, #600 연마면 등 총 3종류의 면을 갖는 황등 화강암과 Berea 사암의 기본마찰각을 측정하고 시험 결과들을 서로 비교하였다. 직접전단시험과 삼축압축시험에서 측정된 기본마찰각은 대체로 정확하지만 면의 상태에 따라서는 매우 차이가 나는 값이 측정되기도 한다. 기울임 시험은 모든 암종에서, 모든 면의 상태에서 유사한 결과를 산출하여 기본마찰각의 측정에 유용하게 사용될 수 있음을 보여주지만, 오차의 범위는 직접적인 시험에 비하여 비교적 넓은 범위를 보인다. 안정된 기본마찰각을 측정하기 위해서는 톱 절단면 보다는 전단면을 항상 일정하게 유지시킬 수 있는 연마면을 사용하는 것이 유리하며, 연마면 중에서도 #600 연마면 같이 매우 매끄러운 면 보다는 #100 연마면 같은 부드러운 수준의 면에서 보다 안정된 결과를 얻을 수 있다. 그러므로 #100 연마면 시료에서 직접전단시험이나 삼축압축시험으로 측정된 기본마찰각이 가장 신뢰성이 높을 것으로 예상되며, #100 연마면 시료에 대한 기울임 시험도 기본마찰각을 측정하는데 있어서 충분한 신뢰성을 갖는 것으로 판단된다.

Keywords

References

  1. Alejano, L. R., Gonzalez, J. and Muralha, J., 2012, Comparison of different techniques of tilt testing and basic friction angle variability assessment, Rock Mech. Rock Eng., 45(6), 1023-1035. https://doi.org/10.1007/s00603-012-0265-7
  2. Barton, N., 1973, Review of a new shear strength criterion for rock joints, Eng. Geol., 7, 287-332. https://doi.org/10.1016/0013-7952(73)90013-6
  3. Barton N., 1976, The shear strength of rock and rock joints, Int. J. Rock Mech. Min. Sci. & Geomech. Abs., 13, 255-279. https://doi.org/10.1016/0148-9062(76)90003-6
  4. Barton, N. and Choubey, V., 1977, The shear strength of rock joints in theory and practice, Rock Mech., 10(1-2), 1-54. https://doi.org/10.1007/BF01261801
  5. Belem, T., Homana-Etienne, F. and Souley, M., 2000, Quantitative parameters for rock joint surface roughness, Rock Mech. Rock Eng., 33(4), 217-242. https://doi.org/10.1007/s006030070001
  6. Brace, W. F. and Byerlee, J. D., 1966, Stick-slip as a mechanism for earthquakes, Sci., 153, 990-992. https://doi.org/10.1126/science.153.3739.990
  7. Bridgman, P. W., 1936, Shearing phenomena at high pressure of possible importance to geology, J. Geol., 44, 653-669. https://doi.org/10.1086/624468
  8. Bruce, I. G., Cruden, D. M. and Eaton, T. M., 1989, Use of a tilting table to determine the basic friction angle of hard rock samples. Can. Geotech. J., 26, 474-479. https://doi.org/10.1139/t89-060
  9. Byerlee, J. D., 1967, Frictional characteristics of granite under high confining pressure, J. Geophy. Res., 72(14), 3639- 3648. https://doi.org/10.1029/JZ072i014p03639
  10. Coulson, J. H., 1970, The effects of surface roughness on the shear strengths of joints in rock, Ph. D. Thesis, University of Illinois, 239p.
  11. Coulson, J. H., 1972, Shear strength of flat surfaces in rock, In: Cording, E. J. (Ed.), 13th Symp. Rock Mech., Am. Soc. Civil Eng., Urbana, 77-105.
  12. Cruden, D. M. and Hu, X. Q., 1988, Basic friction angles of carbonate rocks from Kananaskis county, Canada, Bull. Int. Assoc. Eng. Geol., 38(1), 55-59. https://doi.org/10.1007/BF02590448
  13. Dehler, W. and Labuz, J. F., 2007, Stress path testing of an anisotropic sandstone, J. Geotech. Geoenvir. Eng., 133(1), 157-164.
  14. Grasselli, G. and Egger, P., 2003, Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters, Int. J. Rock Mech. Min. Sci., 40(1), 25-40. https://doi.org/10.1016/S1365-1609(02)00101-6
  15. Grasselli, G., Wirth, J. and Egger, P., 2002, Quantitative threedimensional description of a rough surface and parameter evolution with shearing, Int. J. Rock Mech. Min. Sci., 39(6), 789-800. https://doi.org/10.1016/S1365-1609(02)00070-9
  16. Goldstein, M., Goosev, B., Pyrogovsky, N., Tulinov, R. and Turovskaya, A., 1966, Investigation of mechanical properties of cracked rock. Proc. of 1st ISRM Congress, Lisbon, 521-524.
  17. Gonzalez, J., Gonzalez-Pastoriza, N., Castro, U., Alejano, L. R., and Muralha, J., 2014, Considerations on the laboratory estimate of the basic friction angle of rock joints, In: Alejano, R., Perucho, A., Olalla, C. and Jimenez, R. (Eds.), Rock Eng. and Rock Mech. : Structures in and on Rock Masses (EUROCK 2014), ISRM Eu. Reg. Symp., Vigo, 199-204.
  18. Hoek, E. and Bray, J., 1981, Rock slope engineering, The Institution of Mining and Metallurgy, London, 358p.
  19. Horn, H. M. and Deere, D. U., 1962, Frictional characteristics of minerals., Geotech., 12, 319-335. https://doi.org/10.1680/geot.1962.12.4.319
  20. Jaeger, J. C., 1959, The frictional properties of joints in rock, Geofisica pura e applicata, 43(1), 148-158. https://doi.org/10.1007/BF01993552
  21. Jang, H. S. and Jang, B. A., 2015, New method for shear strength determination of unfilled, unweathered rock joint, Rock Mech. Rock Eng., 48(4), 1515-1534. https://doi.org/10.1007/s00603-014-0660-3
  22. Jang, B. A., Kim, T. H. and Jang, H. S., 2010, Characterization of the three dimensional roughness of rock joints and proposal of a modified shear strength criterion, J. Eng. Geol., 20(3), 319-327. (in Korean with English abstract)
  23. Krsmanovic, D. and Langof, Z., 1964, Large scale laboratory tests of the shear strength of rocky material, In Grundfragen auf dem Gebiete der Geomechanik/Principles in the Field of Geomechanics, Springer Berlin Heidelberg, 20-30
  24. Krsmanovic, D., 1967, Initial and residual shear strength of hard rock, Geotech., 17(2), 145-160. https://doi.org/10.1680/geot.1967.17.2.145
  25. Kulatilake, P. H. S. W., Shou, G., Huang, T. H. and Morgan, R. M., 1995, New peak shear strength criteria for anisotropic rock joints, Int. J. Rock Mech. Min. Sci. & Geomech. Abs., 32(7), 673-697 https://doi.org/10.1016/0148-9062(95)00022-9
  26. Ladanyi, B. and Archambault, G., 1969, Simulation of shear behaviour of a jointed rock mass, Proc. 11th U.S. Symp. on Rock Mech., Berkeley, ARMA-69-0105.
  27. Lane, K. S. and Heck, W. J., 1964, Triaxial testing for strength of rock joints, Proc. 6th U.S. Symp. on Rock Mech., Rolla, ARMA-64-098.
  28. Lee, S. B. and Chang, C. D., 2015, Laboratory experimental study on fracture shear-activation induced by carbon dioxide injection, J. Geol. Soc., 51(3), 281-288 (in Korean with English abstract)
  29. Lee, B. H., Lee, S. J. and Choi, S. O., 2014, A study on relationship between basic frictional angle and mineral composition for granite sample, Tunn. & Under. Space, 24(1), 32-45. (in Korean with English abstract) https://doi.org/10.7474/TUS.2014.24.1.032
  30. Maksimovic, M., 1992, New description of shear strength for rock joints. Rock Mech. Rock Eng., 25(4), 275-284. https://doi.org/10.1007/BF01041808
  31. Muralha, J., 1995, Probabilistic approach of the mechanical behaviour of rock discontinuities, PhD thesis, Instituto Superior Tecnico, Lisbon (in Portuguese).
  32. Newland, P. L. and Allely, B. H., 1957, Volume changes in drained triaxial tests on granular materials, Geotech., 7(1), 17-34. https://doi.org/10.1680/geot.1957.7.1.17
  33. Papaliangas, T. T., Hencher, S. R. and Lumsden, A. C., 1995, A comprehensive peak shear strength criterion for rock joints. Proc. 18th Int. Cong. Rock Mech., Tokyo, Japan, 1:359-366
  34. Park, J. W. and Song, J. J., 2013, Numerical method for the determination of contact areas of a rock joint under normal and shear loads, Int. J. Rock Mech. Min. Sci., 58:8-22
  35. Patton, F. D., 1966, Multiple modes of shear failure in rock and related material, Ph. D. Thesis, University of Illinois, 282p.
  36. Reeves, M. J., 1985, Rock surface roughness and frictional strength, Int. J. Rock Mech. Min. Sci., 22(6), 429-442 https://doi.org/10.1016/0148-9062(85)90007-5
  37. Ruiz, J. and Li, C., 2014, Measurement of the basic friction angle of rock by three different tilt test methods, In: Alejano, R., Perucho, A., Olalla, C. and Jimenez, R. (Eds.), Rock Eng. and Rock Mech. : Structures in and on Rock Masses (EUROCK 2014), ISRM Eu. Reg. Symp., Vigo, 261-266
  38. Sagaseta, C., 1986, On the modes of instability of a rigid block on an inclined plane, Rock Mech. Rock Eng., 19(4), 261- 266. https://doi.org/10.1007/BF01039998
  39. Stimpson, B., 1981, A suggested technique for determining the basic friction angle of rock surface using core, Int. J. Rock Mech. Min. Sci. & Geomech. Abst., 18(1), 63-65. https://doi.org/10.1016/0148-9062(81)90266-7
  40. Wines, D. R. and Lilly, P. A., 2003, Estimates of rock joint shear strength in part of the Fimiston open pit operation in Western Australia, Int. J. Rock Mech. Min. Sci., 40(6), 929- 937 https://doi.org/10.1016/S1365-1609(03)00020-0
  41. Yang, Z. Y. and Chiang, D. Y., 2000, An experimental study on the progressive shear behavior of rock joints with toothshaped asperities, Int. J. Rock Mech. Min. Sci., 37(8), 1247- 1259. https://doi.org/10.1016/S1365-1609(00)00055-1