• Title/Summary/Keyword: 암석의 파쇄도

Search Result 142, Processing Time 0.024 seconds

Case Study of a Stability Analysis of a Granitoid Slope in the Gansung-Hyunnae area, GangwonDo (강원도 간성-현내 지역 화강암류 비탈면 안정성 검토 사례 연구)

  • Kim, Hong-Gyun;Kim, Seung-Hyun;Ok, Young-Seok;Koo, Ho-Bon
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.331-341
    • /
    • 2012
  • Granitoid rocks are generally high-quality rock from a geotechnical perspective, because they rarely contain systematic joints or fragmented fault zones. Although the rock type at the Sanhak site is granite, a collapsed slope has a deep soil layer and shows no residual structures such as discontinuities or faults; surface avalanches from this slope can be observed in several places. To study the stability of this slope, we investigated rainfall duration, variation in pore-water pressure, and the factor of safety considering three cases (current cross-section, initial planning cross-section, revised planning cross-section). With increasing duration of rainfall, the groundwater level rises, up to 20 m in height from ground surface. In the initial planning cross-section, safety was secure for rainfall of 2 days duration, but inadequate for rainfall of 4 days duration. In the revised planning cross-section, however, safety factors were secure for rainfall of 4 days duration. Therefore, to ensure permanent stability at the Sanhak site, a slope degree of 1:1.8 should be maintained during cutting.

Geochemical Origins and Occurrences of Natural Radioactive Materials in Borehole Groundwater in the Goesan Area (괴산지역 시추공 지하수의 자연방사성물질 산출특성과 지화학적 기원)

  • Kim, Moon Su;Yang, Jae Ha;Jeong, Chan Ho;Kim, Hyun Koo;Kim, Dong Wook;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.535-550
    • /
    • 2014
  • The origins and varieties of natural radioactive materials, including uranium and radon-222, were examined in a drilled borehole extending to a depth of 120 m below the surface in the Goesan area. In addition to core samples, eight groundwater samples were collected at different depths, using a double packer system and bailer, and their geochemical characteristics were determined. Most of the rock samples from the drilled core consisted of granite porphyry, with sedimentary rocks (slate, carbonate, or lime-silicates) and pegmatite occurring in certain sections. The pH of samples varied from 7.8 to 8.4, and the groundwater was of a Na-$HCO_3$type. Uranium and thorium concentrations in the core were < 0.2-14.8 ppm and 0.56-45.0 ppm, respectively. Observations by microscope and an electron probe microanalyzer (EPMA) showed that the mineral containing the natural radioactive materials was monazite contained in biotite crystals. The uranium, which substituted for major elements in the monazite, appeared to have dissolved and been released into the groundwater in a shear zone. Concentrations of Radon-222 in the borehole showed no close relationship with levels of uranium. The isotopes of noble gases, such as helium and neon, would be useful for analyzing the origins and characteristics of the natural radioactive materials.

Differential Horizontal Stress Ratio for Danyang Limestone with Vertical Transversely Isotropy (횡적등방성 특성을 갖는 단양 석회암의 수평응력차비 고찰)

  • Jang, Seonghyung;Hwang, Seho;Shin, Jehyun;Kim, Tae Youn
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.4
    • /
    • pp.207-215
    • /
    • 2017
  • To develope shale play which is one of unconventional energy resources, horizontal drilling and hydraulic fracturing are necessary and those are applied to the place where the differential horizontal stress ratio (DHSR) is low. The differential horizontal stress ratio is generally calculated by the minimum and maximum horizontal stress, but it is also calculated from dynamic elastic constants and anisotropic parameters. In this study we analyzed anisotropic properties through the core samples from Danyang limestone and calculated DHSR. The three types of core samples shaped in three directions (vertical, parallel and 45 degree to bedding) were used for laboratory test. We measured P-, S-wave velocities, and density and then calculated dynamic elastic constants, compliance and DHSR. According to the results of the core sample analysis the calculated DHSR is 0.185. Thomsen parameters of the Danyang limestone used in this study are characterized by the P- and S-wave velocities varying along the bedding symmetry axis. It is observed that the DHSR value is more affected by the change in compliance value than the Poisson's ratio. It is necessary to measure SH-wave velocity for more correct petrophysical properties.

Chemical Behaviors of Elements and Mineral Compositions in Fault Rocks from Yangbuk-myeon, Gyeongju City, Korea (경주시 양북면 단층암의 원소거동과 광물조성 특성)

  • Song, Su Jeong;Choo, Chang Oh;Chang, Chun-Joong;Jang, Yun Deuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.137-151
    • /
    • 2013
  • This study is focused on element behaviors and mineral compositions of the fault rock developed in Yongdang-ri, Yangbuk-myeon, Gyeongju City, Korea, using XRF, ICP, XRD, and EPMA/BSE in order to better understand the chemical variations in fault rocks during the fault activity, with emphasis on dependence of chemical mobility on mineralogy across the fault zone. As one of the main components of the fault rocks, $SiO_2$ shows the highest content which ranges from 61.6 to 71.0%, and $Al_2O_3$ is also high as having the 10.8~15.8% range. Alkali elements such as $Na_2O$ and $K_2O$ are in the range of 0.22~4.63% and 2.02~4.89%, respectively, and $Fe_2O_3$ is 3.80~12.5%, indicating that there are significant variations within the fault rock. Based on the chemical characteristics in the fault rocks, it is evident that the fault gouge zone is depleted in $Na_2O$, $Al_2O_3$, $K_2O$, $SiO_2$, CaO, Ba and Sr, whereas enriched in $Fe_2O_3$, MgO, MnO, Zr, Hf and Rb relative to the fault breccia zone. Such chemical behaviors are closely related to the difference in the mineral compositions between breccia and gouge zones because the breccia zone consists of the rock-forming minerals including quartz and feldspar, whereas the gouge zone consists of abundant clay minerals such as illite and chlorite. The alteration of the primary minerals leading to the formation of the clay minerals in the fault zone was affected by the hydrothermal fluids involved in fault activity. Taking into account the fact that major, trace and rare earth elements were leached out from the precursor minerals, it is assumed that the element mobility was high during the first stage of the fault activity because the fracture zone is interpreted to have acted as a path of hydrothermal fluids. Moving toward the later stage of fault activity, the center of the fracture zone was transformed into the gouge zone during which the permeability in the fault zone gradually decreased with the formation of clay minerals. Consequently, elements were effectively constrained in the gouge zone mostly filled with authigenic minerals including clay minerals, characterized by the low element mobility.

Interpretation of Geophysical and Engineering Geology Data from a Test Site for Geological Field Trip in Jeungpyung, Chungbuk (충북 증평 지질학습장 시험부지에 대한 물리탐사 및 지질공학 자료의 해석)

  • Kim, Kwan-Soo;Yun, Hyun-Seok;Sa, Jin-Hyeon;Seo, Yong-Seok;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.339-352
    • /
    • 2016
  • The best way of investigating the physical and mechanical properties of subsurface materials is the combined interpretation of data from borehole geophysical surveys and geotechnical experiments with rock samples. In this study two surface seismic surveys with refraction and surface-wave method are alternatively conducted for downhole seismic surveys in test site for geological field trip in Jeungpyung, Chungbuk. P- and S-wave velocity structures are delineated by refraction and MASW (multichannel analysis of shear waves) methods, respectively. Possion's ratio section, reconstructed from P- and S-wave velocities, is correlated to the outcrop geological features consisting of reddish sedimentary rock, gray volcanic rock, and joints/fractures. In addition, rock samples representative for reddish sedimentary and gray volcanic features are geotechnically analyzed to provide physical, mechanical properties, and elastic modulus. Dynamic elastic moduli estimated from geophysical data is found to be higher than the one from geotechnical data. Reddish sedimentary rock characterized with low porosity and moisture content corresponds to the zone of low electrical resistivities and their small variations in the resistivity sections between the rainy and dry days. This trend suggests that the weathered gray volcanic rock and the nearby fractures with higher low porosity and moisture content are interpreted to be good carrier especially in rainy season.

Evaluation of Hydrogeochemistry of Geothermal Water at Heunghae, Pohang Using Pumping Test Results (양수시험에 의한 포항 흥해지역 심부지열수의 수리지화학적 규명)

  • Cho Byong-Wook;Yun Uk;Song Yoon-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.3
    • /
    • pp.20-30
    • /
    • 2006
  • Hydrogeochemistry of deep geothermal water (temperature: $42.2-47.9^{\circ}C$) at Heunghae, Pohang was evaluated using core logging, temperature and electrical conductivity (EC) logging before and after pumping tests, chemical analysis of geothermal water with depth, and observation of water quality variations during pumping tests. The geology of the area is composed of highly fractured marine sedimentary rocks. The hydrogeochemistry of geothermal water varies with drilling depth, distance from the coast, and pumping duration. According to the temperature and EC variations during 4 times of pumping tests, main aquifer of the area is considered as the fractured zones (540 to 900 m) developed in rhyolitic rocks. The high content of Na and $HCO_3$ in geothermal water can be explained by the inflow of deep groundwater from inland regulated by dissolution of silicates and carbonates. High TDS, Na and Cl concentrations indicate that the geothermal water was also strongly affected by seawater. The molar ratios of Na:Cl ($0.88{\sim}2.14$) and Br:Cl ($21.0{\sim}24.9{\times}10^{-4}$) deviate from those of seawater (0.84 and $34.7{\times}10^{-4}$, respectively), suggesting that water-rock interaction also plays an important role in the formation of water quality.

Analysis of the Causes of Clustered Scismicity Registered in Yeoncheon, the Middle Part of the Korean Peninsula through Gravity Field Interpretation and Modeling (중력이상 수치해석을 통한 연천지역 군발지진 원인분석)

  • Sungchan Choi;Sung-Wook Kim;Eun-Kyeong Choi;Younghong Shin;Tae-Kyung Hong
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.633-648
    • /
    • 2022
  • Gravity data were analyzed to identify the cause of clustered seismicity that occurred intensively in Yeoncheon, located in the central part of the Korean Peninsula. Our analysis suggests that the En echelon faults developed in the northwest-southeast direction. In addition, in the eastern part of the Dongducheon Fault, it was interpreted that high-density lower bedrock intermittently lifts close to the surface due to vertical tectonic movement accompanied by a flower structure. The fracture zone of the Dongducheon Fault is estimated that the width is about 200 m, the depth is at least 5 km, and the density is about 15% lower than the adjacent rocks. It is analyzed that the shallow earthquakes that occurred within 5 km depth was concentrated along the low-density En echelon fault fracture zone developed between the high-density rocks intruding close to the surface. Therefore, the earthquakes can be interpreted as the result that the north-south stress caused by the dextral tectonic movement of the Dongducheon Fault activated the En echelon fault in the northwest-southeast direction.

Application of Depth Resolution and Sensitivity Distribution of Electrical Resistivity Tomography to Modeling Weathered Zones and Land Creeping (전기비저항 깊이분해능 및 감도분포: 풍화층 및 땅밀림 모델에 대한 적용)

  • Kim, Jeong-In;Kim, Ji-Soo;Ahn, Young-Don;Kim, Won-Ki
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.157-171
    • /
    • 2022
  • Electrical resistivity tomography (ERT) is a traditional and representative geophysical method for determining the resistivity distributions of surrounding soil and rock volumes. Depth resolution profiles and sensitivity distribution sections of the resistivities with respect to various electrode configurations are calculated and investigated using numerical model data. Shallow vertical resolution decreases in the order of Wenner, Schlumberger, and dipole-dipole arrays. A high investigable depth in homogeneous medium is calculated to be 0.11-0.19 times the active electrode spacing, but is counterbalanced by a low vertical resolution. For the application of ERT depth resolution profiles and sensitivity distributions, we provide subsurface structure models for two types of land-creping failure (planar and curved), subvertical fracture, and weathered layer over felsic and mafic igneous rocks. The dipole-dipole configuration appears to be most effective for mapping land-creeping failure planes (especially for curved planes), whereas the Wenner array gives the best resolution of soil horizons and shallow structures in the weathered zone.

High Resolution for Shallow Seismic Reflection (Applied to the Underground Cavity) (천부층 지진파 반사에 대한 해상도 (지하 공동에 응용))

  • 김소구
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.167-176
    • /
    • 1993
  • The high resolution studies for shallow seismic reflection are carried out using 24-channel seismograph and the high sensitivity geophone(50-500Hz). In order to study the underground structures such as small faults, fractures, cracks and cavities, it is of great importance to enhance high resolution of the seisrnic records for the targets vertically and laterally. In analysis of high resolution seismic reflection, Nyquist frequency($F_N$) should be lager than the highest frequency in the records and the highest wave number should not be exceed the Nyquist wave number($1/2{\Delta}x$). The highest frequency above the Nyquist will be removed using low pass filter or antialias filter. The trace interval Ax should be taken into account so that the highest wave number(f/v) can be less than $1/2{\Delta}x$. The Fraunhofer diffraction of a hyperbola seismic section above the tunnel appeares on the common offset method, and little first arrivals of direct wave on the single-end shooting, delayed strong impulsive reflections are also shown above the tunnel. Ray Method(Cherveney and Psencik, 1983) also represents the same results that the reflected waves from the tunnel are delayed and single impulsive with little first arrivals, while transrnitted waves through the tunnel are delayed with low frequency.

  • PDF

The Prediction of Ground Condition ahead of the Tunnel Face using 3-Dimensional Numerical Analysis (3차원 수치해석을 이용한 터널막장 전방 지반 상태의 예측)

  • You Kwang-Ho;Song Han-Chan;Kim Ki-Sun;Lee Dae-Hyuck;Park Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.440-449
    • /
    • 2004
  • Rock mass includes natural discontinuities such as joints and faults during its formation. Discontinuities are also referred as planes of weakness because of their weak mechanical characteristics. In the design of underground structures, it is necessary to consider the properties of discontinuities to insure the stability. During the excavation of a tunnel, these discontinuities have to be identified as early as possible so that proper change in excavation method or support design can be made accordingly. The excavation of the tunnel in a stable rock mass causes a 3-dimensional arching effect around the excavation face. It was revealed by previous studies that the existence of a weak zone or a fault zone ahead of tunnel foe induces a typical displacement tendency of convergence. For better understanding of the meaning of influence/trend lines of various displacement components, three-dimensional numerical analyses were conducted while varying deformation moduli, thicknesses and orientations of discontinuities. Numerical results showed that the changes in influence/trend lines of various displacement components were very similar to those by measurements. The discrepancies from the expected values were dependent on the physical properties, thicknesses and orientations of discontinuities.