• 제목/요약/키워드: 암반 변형

Search Result 353, Processing Time 0.017 seconds

A Study of Rockbursts Within a Deep Mountain TBM Tunnel (산악 TBM 터널에서 발생한 암반파열 현상에 대한 연구)

  • Lee, Seong-Min;Park, Boo-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.39-47
    • /
    • 2003
  • Rockbursts are mainly caused by a sudden release or the stored strain energy in the rock mass. They have been the major hazard in deep hard rock mines but rarely occur in tunnels. Due to the short history and limited information on rockbursts, the topic has rarely been studied in Korea. Some cases of rockbursts, however, have been reported during construction of a mountain tunnel for waterway. This study focuses on analyzing data on rockbursts obtained from a TBM (Tunnel Boring Machine) tunnel and suggests methods for a comprehensive understanding on rockbursts. From the analysis of the field data of rockbursts, it was found that most rockbursts mainly occurred at the section between the tunnel face and the TBM operating room, and the rock bursting phenomena lasted up to 20 days after excavation in certain areas. The data also show that the bursting spots are located all around the tunnel surface including the face, the wall, and the roof, The maximum size of bursting spots is usually less than 100cm. This study also suggests new scale systems of brittleness and uniaxial compressive strength to evaluate the possible tendency for a rockburst. These systems are scaled based on the scale system of strain energy density. In addition, with these scale systems, this research shows that there are potentially higher tendencies for rockbursts in this specific tunnel. Moreover this research suggests that properties of rock and rock mass, RMR (Rock Mass Rating) value, tunneling method, excavating speed, and depth of tunnel have a strong correlation with rockbursts.

Analysis of Elastic Constants of an Anisotropic Rock (이방성 암석의 탄성상수 분석연구)

  • 박철환
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.59-63
    • /
    • 2001
  • The total number of elastic constants of an anisotropic body is 9 and thus it is very difficult to measure these constants experimentally. The number of elastic constants can be reduced if a rock or rock mass is regarded as isotropic or transversely isotropic material. Since only 4 stress-strain relationships can be obtained, it is theoretically impossible to determine all 5 constants from a single uniaxial compression teat. Lekhnitskii overcame this problem by suggesting the fifth equation based on laboratory tests. But his equation is theoretically wrong and does not agree with experimental results. This paper describes the stress-strain relationships and the independent/dependent elastic constants of an anisotropic mass and suggests a testing mothed to determine 5 independent elastic constants for a transversely isotropic rock.

  • PDF

Creep Characteristics of Granite in Gagok Mine (가곡광산 화강암의 크리프 특성)

  • Yoon, Yong-Kyun;Kim, Byung-Chul;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.390-398
    • /
    • 2010
  • The time-dependent behaviour of rock is very important characteristics which can be utilized as basic input data for underground mine design or in predicting a long-term stability of underground rock mass structures. In this study, creep tests under uniaxial compression were carried out for the granite specimens sampled in Gagok Mine. Burgers model, Griggs and Singh creep laws were used to simulate the measured creep strain. Through comparing the measured creep behaviour with the approximated creep behaviors from Burgers model, Griggs and Singh creep laws, it is shown that Griggs creep law results in the best approximation of granite in Gagok Mine.

Modeling the Effect of Geology on Uplift in Concrete Gravity Dam Foundations with the Discontinuous Deformation Analysis (불연속 변형 해석을 통한 콘크리트 중력댐 기초에 작용하는 부양력에 대한 지질구조의 영향 모델링)

  • Kim, Yong-Il
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.304-315
    • /
    • 2003
  • In this paper, the DDA method with a new hydro-mechanical algorithm is used to study the effect of rock discontinuities on uplift and seepage in concrete gravity dam foundations. This paper presents an alternative method of predicting uplift and seepage at the base of concrete gravity dams. A sensitivity analysis was carried out to study the importance of several parameters on dam stability such as the orientation, spacing, and location of discontinuities. The study shows that joint water flow and adverse geological conditions could result in unusual uplift at the base of concrete gravity dams, well in excess of what is predicted with the classical linear or hi-linear pressure assumption. It is shown that, in general, the DDA program with the hydro-mechanical algorithm can be used as a practical tool in the design of gravity dams built on fractured rock masses.

A Comparison of Barton-Bandis Joint Model and Mohr-Coulomb Joint Model for Tunnel Stability Analysis with DEM (개별요소법을 이용한 터널 안정성 해석에 있어 Barton-Bandis 절리 모델과 Mohr-Coulomb절리 모델의 비교)

  • 이성규;김치환
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.167-173
    • /
    • 2001
  • The joint model has influence on the results of discontinuum analysis. In this study the results of discontinuum analysis with Barton-Bandis joint model(BB model) and with Mohr-Coulomb joint model(MC model) are compared. The results of continuum analysis under the same condition are compared with the results of discontinuum analysis to investigate the behavior of rockmass around tunnel. The result of continuum analysis and that of discontinuum analysis with BB model show similar distribution of displacement and stress. On the other hand, the discontinuum analysis with MC model shows different displacement distribution and stress distribution. Moreover, the displacement and minor principal stress of the discontinuum analysis with MC model are smaller than those of continuum analysis, although the joints are explicitly considered in the discontinuum analysis. These results are originated from the limitation of MC model in simulating joint deformation behavior, especially the assumption of constant dilation jingle independent of it)int 7hear displacement.

  • PDF

Development of an In Situ Direct Shear Test Apparatus and Its Field Application (현장직접전단시험기의 개발 및 현장적용에 관한 연구)

  • Kim, Yong-Phil;Lee, Young-Kyun;Lee, Sung-Kook;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.181-191
    • /
    • 2011
  • It is very difficult to prepare a lab. test specimen from weak rock masses affected by faults, highly fractured zone or weathered zone. In conventional method of in situ direct shear test a rock block is sheared inside galleries, where reactions for the hydraulic jacks are available. A new in situ direct shear test apparatus has been developed in this study to perform the test inside galleries as well as open pit conditions. The apparatus is composed of normal and shear reaction plates including load transfer plates, hydraulic cylinder systems, load cells, multistage shear boxes with fixing devices, and needle rollers. Maximum size of the test block is $400{\times}400{\times}460$ mm, and procedures of the test block preparation has been suggested. To explore the field applicability of in situ direct shear test apparatus, proper test block site was investigated by extensive geological field survey. In situ direct shear test has been successful in producing most of information related to strength and deformability of the weak rock.

Influence of Design Parameters of Grout Injection in Rock Mass using Numerical Analysis (암반 그라우팅 주입 설계변수가 주입성능에 미치는 영향의 수치해석적 평가)

  • Lee, Jong Won;Kim, Hyung Mok;Yazdani, Mahmoud;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.324-332
    • /
    • 2017
  • In this paper, a numerical analysis of one-dimensional viscous fluid flow in a rock joint using UDEC code is performed to evaluate the effect of design parameters on injection performance. We consider injection pressure, fluid compressibility, time dependence of yield strength and viscosity of injected grout fluid, and mechanical deformation of joint as the design parameters, and penetration length and flow rate of injection are investigated as the injection performance. Numerical estimations of penetration length and flow rate were compared to analytical solution and were well comparable with each other. We showed that cumulative injection volume can be over-estimated by 1.2 times than the case that the time-dependent viscosity evolution is not considered. We also carried out a coupled fluid flow and mechanical deformation analysis and demonstrated that injection-induced joint opening may result in the increment of cumulative volume by 4.4 times of that from the flow only analysis in which joint aperture is kept constant.

A study on critical strain based damage-controlled test for the evaluation of rock tunnel stability (암반터널 안정성 평가를 위한 손상제어실험 기반의 한계변형률에 관한 연구)

  • Lee, Kang-Hyun;Kim, Do-Hoon;Park, Jeong-Jun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.501-517
    • /
    • 2011
  • In general, the tunnel stability during excavation is assessed by comparing measured displacements at roof and sidewall to control criteria. The control criteria were established based on the past experience that considered ground conditions, size of the tunnel cross section, construction method, supports, etc. Therefore, a number of researches on the control criteria using the critical strain have been conducted. However, the critical strain obtained from uniaxial compression tests have drawbacks of not taking damage in rock mass due to increase of stress level and longitudinal arching into account. In this paper, damage-controlled tests simulating stress level and longitudinal arching during tunnel excavation were carried out in addition to uniaxial compression tests to investigate the critical strain characteristics of granite and gneiss that are most abundant rock types in Korean peninsula. Then, the critical strains obtained from damage-controlled tests were compared to those from uniaxial compression tests; the former showed less values than the latter. These results show that the critical strain obtained from uniaxial compression tests has to be reduced a little bit to take stress history during tunnel excavation into account. Moreover, the damage critical strain was proposed to be used for assessment of the brittle failure that usually occurs in deep tunnels.

A Study on the Deformation Behaviors around Twin Tunnels Using Scaled Model Tests (쌍굴터널 주변지반의 변형거동에 관한 모형실험 연구)

  • 김종우;박지용
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.381-390
    • /
    • 2004
  • In this study, scaled model tests were performed to investigate the deformation behaviors around twin tunnels. Eleven types of test models which had respectively different pillar widths, rock types and loading conditions were mode, where the modelling materials were the mixture of sand, plaster and water. The models with shallower pillar width were cracked under lower pressure than the models with thicker pillar width, and they showed the more tunnel convergences and the clear spatting failures. The models of hard rock were cracked under 50% higher pressure than the models of soft rock and they showed the less tunnel convergences. The failure and deformation behaviors of twin tunnels were also dependent on the loading conditions of models. Futhermore, the results of FLAC analysis were qualitatively coincident with the test results.

Block Deformation Analysis Using Three-dimensional Discontinuous Deformation Analysis(DDA) (삼차원 불연속 변형 해석(DDA)을 이용한 블록거동해석)

  • 장현익;이정인
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.158-170
    • /
    • 2002
  • Since the development of Discontinuous Deformation Analysis (DDA) by Shi (1984), there has been much improvement in the theory and programs. These, however, are all based on the assumption of a two-dimensional plane strain or plane stress state; and because a rock block system is a three-dimensional problem, a two-dimensional analysis has limited application. So a three-dimensional analysis is required in the design of rock slopes and underground spaces where three-dimensional discontinuities dominate stability. In this study three-dimensional DDA program is developed using the Shi's two-dimensional theory and program, and the two cases of three-dimensional block are analysed. The program is applied to one sliding-face blocks and wedge sliding and it gives the good results comparing to the exact solution. Multi-block cases will be analysed for many other application soon.