• Title/Summary/Keyword: 암반분류

Search Result 292, Processing Time 0.022 seconds

A Study on Applicability of Pre-splitting Blasting Method According to Joint Frequency Characteristics in Rock Slope (암반사면의 절리빈도 특성에 따른 프리스플리팅 발파공법의 적용성 연구)

  • Kim, Shin;Lee, Seung-Joong;Choi, Sung-O.
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.1-16
    • /
    • 2010
  • This study focuses on the phenomenon that the blast damaged zone developed on rock slope surfaces can be affected by joint characteristics rather than by explosive power when the pre-splitting is applied to excavate a jointed rock slope. The characteristics of rock joints on a slope were investigated and categorized them into 4 cases. Also an image processing system has been used for comparing the distribution pattern of rock blocks. From this investigation, it was found that the rock blocks bigger than 2,000 mm occupied 42% in the case of single joint set and it showed the well efficiency of pre-splitting blast. In cases of 2~3 parallel joint sets and 2~3 intersecting joint sets are developed on rock surfaces, the rock blocks in the range of 1,000~2,000 mm occupied 43.6% and 35.8%, respectively, and it showed that the efficiency of pre-splitting was decreased. When more than 3 joint sets are randomly developed, however, the rock blocks in the range of 250~500 mm occupied 35% and there was no block bigger than 1,000 mm. This denotes that the blasting with pre-splitting was not effective. The numerical analysis using PFC2D showed that the blast damaged zone in a rock mass could be directly influenced by the pre-splitting. It is, therefore, required to investigate the discontinuity pattern on rock surfaces in advance, when the pre-splitting method is applied to excavate jointed rock slopes and to apply a flexible blating design with a consideration of the joint characteristics.

Application of Back Analysis for Tunnel Design by Modified In Situ Rock Model (현장암반 모델을 적용한 터널의 역해석)

  • Kim, Hak-Mun;Lee, Bong-Yeol;Hwang, Ui-Seok;Kim, Tae-Hun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.25-36
    • /
    • 2000
  • The purpose of this research work is to propose an analytical method of tunnel design based on reasonable site data. Therefore the proposed design method consists of monitoring data and Modified In Situ Rock Model. Also the Rock Mass Rating for very poor quality rock is very difficult to estimate, the balances between the ratings may no longer gives a reliable basis for the rock mass strength. But in reality Rock Mass Rating is only the property which can be obtained from face mapping records of the exposed tunnel face during construction stage. Evaluation of rock parameters for the actual design prior to tunnel construction should be corrected during tunnelling process in particularly complex ground conditions. This study intends to investigate application of in-situ rock model to soft rock tunnelling (weathered rock) by face mapping results and site measurement data that are obtained at the costraction site of Seoul Subway Tunnel. For the preparation of more reliable ground parameters, the Rock Mass Rating values for the weathered rocks were modified and readjusted in accordance with the measurement data. The modified input parameters obtained by the proposed method are used for the prediction of the tunnel behavior at subsequent construction stages. The results of this study revealed that more reasonable feed back tunnel analysis can be possible as suggested. Ample measurement data would be able to confirm the new proposed technique in this research work.

  • PDF

Probabilistic Analysis of Blasting Loads and Blast-Induced Rock Mass Responses in Tunnel Excavation (터널발파로 인한 굴착선주변 암반거동의 확률론적 연구)

  • 이인모;박봉기;박채우
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.89-102
    • /
    • 2004
  • The generated blasting pressure wave initiated under decoupled-charge condition is a function of peak blasting pressure, rise time, and wave-shape function. The peak blasting pressure and the rise time are also the function of explosive and rock properties. The probabilistic distributions of explosive and rock properties are derived from the results of their property tests. Since the probabilistic distributions of explosive and rock properties displayed a normal distribution, the peak blasting pressure and the rise time can also be regarded as a normal distribution. Parameter analysis and uncertainty analysis were performed to identify the most influential parameter that affects the peak blasting pressure and the rise time. Even though the explosive properties were found to be the most influential parameters on the peak blasting pressure and the rise time from the parameter analyses, the result of uncertainty analysis showed that rock properties constituted major uncertainties in estimating the peak blasting pressure and the rise time rather than explosive properties. Damage and overbreak of the remaining rock around the excavation line induced by blasting were evaluated by dynamic numerical analysis. A user-subroutine to estimate the rock damage was coded based on the continuum damage mechanics. This subroutine was linked to a commercial program called 'ABAQUS/Explicit'. The results of dynamic numerical analysis showed that the rock damages generated by the initiation of stopping hole were larger than those from the initiation of contour hole. Several methods to minimize those damages were proposed such as relocation of stopping hole, detailed subdivision of rock classification, and so on. It was found that fracture probability criteria and fractured zones could be distinctively identified by applying fuzzy-random probability.

A Study of the Relationships among RMR, Q-system and GSI Applied to Classify Rock Mass of Limestone Mine (석회석 광산의 암반 분류에 적용된 RMR, Q-system, GSI 간의 상관성 연구)

  • Yoon, Yong-Kyun;Lee, Hong-Woo
    • Explosives and Blasting
    • /
    • v.35 no.4
    • /
    • pp.27-35
    • /
    • 2017
  • A total of 22 sites around openings of limestone mine are chosen to assess rock mass classification schemes such as RMR, Q-system, and GSI. RMR and Q are modified to estimate the relationship with GSI. Q' is the modified Q with SRF=1.0 and $J_w=1.0$. Rock mass is assumed to be completely dry and very favorable discontinuity orientations are assumed to estimate ${RMR_{89}}^{\prime}$. Relationships of Q-Basic RMR, Q-Total RMR, ${GSI-RMR_{89}}^{\prime}$, and GSI-Q' are analyzed, in which a correlation of ${GSI-RMR_{89}}^{\prime}$ is found to be the highest. Failure strains are calculated using the modulus ratios and most measuring sites appear to be stable with low failure strain class.

Hydraulic Conductivity Changes Due to Subsidence Using Rock Mass Classification Parameters (암반분류변수를 이용한 침하에 따른 수리전도도 변화 해석)

  • 윤용균;김장순;김종우
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.321-329
    • /
    • 2003
  • The change of strain-dependent hydraulic conductivity around mined panels due to subsidence is examined where normal and shear strains, modulus reduction ratio and joint spacing are major factors controlling the changes of hydraulic conductivity. Modulus reduction ratio and joint spacing are defined through RMR and RQD, respectively. Utilizing these two empirical parameters, changes of hydraulic conductivity values of a full gamut of rock mass conditions are determined. The change of hydraulic conductivity is not apparent in the near surface area and more significant change takes place in the area around mined panels. A zone of strong influence from the subsidence extends to a height of approximately 20m above mined panels. The shear strain does also play the role of increasing a hydraulic conductivity around mined panels. As RMR of rock mass decreases, a hydraulic conductivity is found to be increased and this means that subsidence in a poor rock with low RMR has a great effect on a hydraulic conductivity field.

Stability Analysis of High Speed Railway Tunnel Passing Through the Abandoned Mine Area (폐광지역을 통과하는 고속철도터널의 안정성 평가)

  • 장명환;양형식;정소걸
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.147-154
    • /
    • 2000
  • The influence of the mined-out caves on the stability of the high speed railway tunnel was investigated with a series of geological logging and in-situ tests on the one hand, and with the rock mass classification using the multiple regression analysis on the other hand. The rock mass in this area can be classified as 'fair', and the condition of the discontinuities plays the most important role in the classification of the rock mass. The results of the analysis obtained by the FLAC showed that the western part of the tunnel locating at 50m above the mine cavities could be affected by subsidence associated with a considerable deformation, the magnitude of which might depend on the properties of the rock mass. Key word : multi regression analysis, subsidence, mine cavities

  • PDF

A Study on Earth Pressure Calculating Method about Shield TBM Tunnel Segments in the Rock (암반층에서 쉴드 TBM 터널 세그먼트의 작용하중 산정방법에 관한 연구)

  • Chun, Byungsik;Ki, Jungsu;Kang, Taehee;Kwag, Yunehyeong;Byun, Yoseph
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.13-21
    • /
    • 2014
  • This study analyzed the differences in the analysis techniques through a comparative analysis of the various segment's modeling techniques of Shield TBM method and proposed reasonable modeling techniques. Also, this study suggested reasonable estimating methods of load to be applicable in the field through the load analysis and three-dimensional finite element analysis by estimating model of rock mass relaxation load. Estimating method of relaxation area by rock mass rating makes no odds of output in subgrade with high rock mass rating, but so the difference of output is large, that is judged to set conservative design off. In estimating result of rock mass relaxation area by three-dimensional analysis relaxation area of subgrade with low-grade soil was predicted to be positioned at medium-range of many methods, in case of designing segment in subgrade with low-grade soil it needs to actively review estimation of relaxation area through three-dimensional analysis reflecting mechanical tunnel excavation.

Suggestion of a Modified RMR based on Effect of RMR Parameters on Tunnel Displacement in Sedimentary Rocks (퇴적암 기반 터널에서의 지질인자별 변위 영향도를 고려한 RMR 수정 제안)

  • Seo, Yong-Seok;Yim, Sung-Bin;Na, Jong-Hwa;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.197-205
    • /
    • 2008
  • Total displacement under non-reinforcement is a quantitative index of rock mass behavior during tunnel excavation and depends widely upon geological characteristics. The primary purpose of this study is to suggest a rock mass evaluation method, well representing tunnel behavior during excavation, according to rock type. A 3-D numerical analysis was carried out, with consideration of the shape of tunnel section, excavation condition and so forth, in a sedimentary rock-based tunnel, and total displacements under non-reinforcement according to rock mass class were calculated. Finally, quantification analysis was carried out to assess correlation of the total displacement with RMR parameters. As the result, a modified RMR system fer quantification of rock mass behavior during tunnel excavation is suggested.

Failure Types in Rock Slopes According to Geological Characteristics (지질특성에 따른 암반사면 붕괴유형연구)

  • 정형식;유병옥
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.37-50
    • /
    • 1996
  • In this study, we collected data through the investigation of rock slopes of highway. By analyzing the collected data, the main factors of rock slope failure were studied. We studied on the failure types and scales according to rock types and geological structures in many rock slopes of highway. As a result, it was shown that many failed slopes were distributed in the areas of Cretaceous sedimentary rocks of south-eastern part in the Korean Peninsula and the Gneiss Complex in both Kyonggi-Do and Kangwon-Do. According to rock types, the following slope failure types were shown : that igneous rocks had the types of rock fall, plane failure, soil erosion and circular failure but had low failure frequency, and sedimentary rocks had predominantly the type of plane failure. Metamorphic rock showed the types of circular failure, wedge failure and plane failure due to poor rock qualities . According to geological structures, the following slope failure types were shown slope failure in igneous rocks was caused by joints, and in sedimentary rocks by bedding plane, and in metamorphic rocks by faults and poor rock qualities.

  • PDF

A Study on Automatic Classification of Characterized Ground Regions on Slopes by a Deep Learning based Image Segmentation (딥러닝 영상처리를 통한 비탈면의 지반 특성화 영역 자동 분류에 관한 연구)

  • Lee, Kyu Beom;Shin, Hyu-Soung;Kim, Seung Hyeon;Ha, Dae Mok;Choi, Isu
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.508-522
    • /
    • 2019
  • Because of the slope failure, not only property damage but also human damage can occur, slope stability analysis should be conducted to predict and reinforce of the slope. This paper, defines the ground areas that can be characterized in terms of slope failure such as Rockmass jointset, Rockmass fault, Soil, Leakage water and Crush zone in sloped images. As a result, it was shown that the deep learning instance segmentation network can be used to recognize and automatically segment the precise shape of the ground region with different characteristics shown in the image. It showed the possibility of supporting the slope mapping work and automatically calculating the ground characteristics information of slopes necessary for decision making such as slope reinforcement.