Browse > Article

A Study of the Relationships among RMR, Q-system and GSI Applied to Classify Rock Mass of Limestone Mine  

Yoon, Yong-Kyun (세명대학교)
Lee, Hong-Woo (세명대학교)
Publication Information
Explosives and Blasting / v.35, no.4, 2017 , pp. 27-35 More about this Journal
Abstract
A total of 22 sites around openings of limestone mine are chosen to assess rock mass classification schemes such as RMR, Q-system, and GSI. RMR and Q are modified to estimate the relationship with GSI. Q' is the modified Q with SRF=1.0 and $J_w=1.0$. Rock mass is assumed to be completely dry and very favorable discontinuity orientations are assumed to estimate ${RMR_{89}}^{\prime}$. Relationships of Q-Basic RMR, Q-Total RMR, ${GSI-RMR_{89}}^{\prime}$, and GSI-Q' are analyzed, in which a correlation of ${GSI-RMR_{89}}^{\prime}$ is found to be the highest. Failure strains are calculated using the modulus ratios and most measuring sites appear to be stable with low failure strain class.
Keywords
RMR; Q-system; GSI; Modulus ratio; Failure strain;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 김홍표, 장호민, 강추원, 고진석, 2010, 현장암반 평가에 관한 제안 및 암반분류법들간의 상관관계 고찰, 화약. 발파(대한화약발파공학회지), Vol. 28, No. 2, pp. 133-147.
2 선우춘, 황세호, 정소걸, 이상규, 한공창, 2001, 암반분류방법간의 상관관계에 대한 고찰, 한국지반공학회논문집, Vol. 17, No. 4, pp. 127-134.
3 선우춘, 정소걸, 최성웅, 정용복, 전양수, 이상권, 2005, 석회석 광산 갱내 채광장 및 갱도의 안전유지 기술연구, 산업자원부, 150p.
4 선우춘, 류동우, 김형목, 김기석, 2011, 국내 화강암의 지반공학적 특성 및 암반분류법과의 상관성에 관한 연구, 터널과 지하공간(한국암반공학회지), Vol. 21, No. 3, pp. 205-215.
5 신중호, 박철환, 선우춘, 2008, RMR 및 Q 암반분류법의 평가 요소간 친숙도 관계 분석, 터널과 지하공간(한국암반공학회지), Vol. 18, No. 6, pp. 408-417.
6 윤용균, 이홍우, 2007, 암반분류법을 이용한 석회석 광산 내 대규격 갱도의 안정성 평가, 터널과 지하공간(한국암반공학회지), Vol. 17, No. 6, pp. 503-510.
7 이홍우, 2007, 암반분류법과 수치해석을 이용한 대규격 갱도의 설계와 안정성 평가에 관한 연구, 석사학위논문, 세명대학교, 65p.
8 Barton, N., R. Lien and J. Lunde, 1984, Engineering classification for rock masses for the design of tunnel support, Rock Mech., Vol. 6, pp. 189-236.
9 Bieniawski, Z. T., 1989, Engineering rock mass classification, John Wiley & Sons, pp. 51-90.
10 Hoek, E., P. K. Kaiser and W. F. Bawden, 1995, Support of underground excavations in hard rock, A.A.Balkema, pp. 27-98.
11 ISRM, 1978, Suggested methods for the quantitative description of discontinuities in rock masses, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 15, pp. 119-368.
12 Marinos, P. and E. Hoek, 2000, GSI: A geologically friendly tool for rock mass strength estimation, Pro. of the GeoEng2000 at the international conference on geotechnical and geological engineering, Melbourne, pp. 1422-1446.
13 Milne, D., J. Hadjigeorgiou and R. Pakalnis, 1998, Rock mass characterization for underground hard rock mines, Tunnelling and Underground Space Technology, Vol. 13, No. 4, pp. 383-391.   DOI
14 Ramamurthy, T., 2001, Shear strength response of some geological materials in triaxial compression, Int. J. Rock Mech. Min. Sci., Vol. 38, pp. 683-697.   DOI
15 Ramamurthy, T., 2004, A geo-engineering classification for rocks and rock masses, Int. J. Rock Mech. Min. Sci., Vol. 41, pp. 89-101.   DOI
16 Zhang, L., 2005, Engineering properties of rocks, Elsevier, pp. 99-118.