• Title/Summary/Keyword: 암맥

Search Result 135, Processing Time 0.025 seconds

Mineralogy and Genesis of Manganese Ores from the Eosangcheon Mine, Korea (어상주광산(魚上川鑛山)의 망간광석(鑛石)에 대(對)한 광물학적(鑛物學的) 및 성인적연구(成因的硏究))

  • Kim, Soo Jin;Kim, Seong Hoon
    • Economic and Environmental Geology
    • /
    • v.15 no.4
    • /
    • pp.205-219
    • /
    • 1982
  • The Eosangcheon manganese ore deposits occur as supergene weathering deposits along quartz porphyry dikes developed in the Ordovician Heungweolri dolomite and Samtaesan limestone formations. The manganese ores are composed of manganese oxide minerals and associated other minerals. Rancieite and todorokite are abundantly found, and birnessite, nsutite, pyrolusite and chalcophanite are found in minor quantities. Associated other minerals are calcite, gypsum, goethite, lepidocrosite, quartz, and sericite. Microscopic, chemical, X-ray powder diffraction, infrared absorption spectroscopic and differential thermal analyses have been made for manganese oxide minerals and associated other minerals. The relationship of birnessite and rancieite was studied by means of X-ray powder diffraction and infrared absorption spectroscopic analyses. It is assumed that these minerals are closely related to each other in crystal structure, but separate species. The manganese oxide minerals were formed mainly by replacement, precipitation from solution, and recrystallization in the supergene weathering environment. The trend of formation of manganese oxide minerals is: (Rhodochrosite)-(todorokite)-(birnessite, rancieite)-(nsutite, pyrolusite, chalcophanite).

  • PDF

Relative Timing of Shear Zone Formation and Granite Emplacement in the Yechon Shear Zone, Korea (예천(醴泉) 전단대(剪斷帶)의 생성(生成)과 화강암(花崗岩) 관입(貫入)의 상대적(相對的)인 시기(時期))

  • Chang, Tae Woo
    • Economic and Environmental Geology
    • /
    • v.23 no.4
    • /
    • pp.453-463
    • /
    • 1990
  • The Yechon shear zone developed by strike-slip movement was formed in a relatively high temperature condition just after the Jurassic syntectonic granites had been emplaced during Daebo Orogeny. Post-emplacement formation of the shear zone is favored by continuity of foliations and lineations within and without the granites, development of mylonitic structures in the wallrocks, deformation of pegmatite and felsite dikes, and pretectonic growth of porphyroblasts in the wallrocks. A variety of shear sense indicators in the shear zone are predominantly observed in the intensely to extremely deformed rocks. They show that bulk non-coaxial detormation has occurred, and that the sense of shear is consistently dextral with S-C fabrics, grain shape fabrics, asymmetric porphyroclast systems, mica fish, asymmetric extension structures and quartz C-axis fabrics.

  • PDF

Effectiveness of the Electrode Arrays for Delineating 2-D Subsurface Structure (2차원 지하구조 규명을 위한 전극배열의 효율성)

  • Yoon, Jong-Ryeol;Lee, Kiehwa
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.345-355
    • /
    • 1996
  • The effectiveness of various electrode configurations in horizontal mappings and 1-D inversions of vertical sounding data for delineating 2-D structures was studied. Apparent resistivity values of three point, dipole-dipole, Wenner, and Schlumberger mappings were simulated for such structures as vertical dyke, tabular prism, buried vertical fault, ramp and complex structure by finite difference method (FDM) and they were compared with each other. Also 2-D cross sections for three structures obtained by interpolation of 1-D inverted sounding data in terms of three layers were compared for Schlumberger and Wenner arrays. On these cross sections, horizontal and vertical resistivity interfaces of the 2-D structures are revealed relatively clearly. Apparent resistivity curves of Schlumberger mapping show vertical resistivity discontinuities very well. On the whole, Schlumberger array is superior to the other arrays in electric sounding as well as mapping. This study clearly indicates that interpretations of 2-D structures based on 1-D inversion are possible.

  • PDF

APPLICATION OF TELEVIEWER AND COLOR-CORESCANNER FOR THE ESTIMATION OF GNEISS STONE RESOURCES OF HADONG, KYEONGSANNAMDO PROVINCE (하동지역 편마암 석재의 품질 평가를 위한 텔레뷰어 및 칼라 코어스캐너의 응용)

  • Hyun, Hye-Ja;Kim, Jung-Yul
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.4
    • /
    • pp.255-267
    • /
    • 2004
  • Analysis of fracture system in a stone quarry mine is a critical importance in assessing the recoverable amounts of building stones as well as in establishing the systematic and efficient development plan. Rock formation comprising vein structure, degree of weathering, and compositon of minerals, is a critical factor of estimating the stone quality. The aim of this study is to provide desirable informations about both fracture pattern and rock formation by using Televiewer and Color-corescanner. Televiewer measurement were conducted at 7 boreholes in the gneiss quarry mine, Hadong, Kyeongsangnamdo province and the corresponding cores were scanned using Color-corescanner at the same place. In Televiewer images, all kinds of fractures were clearly observed and a better discrimination of stone quality can be identified. Meanwhile, the core images with high resolution (max. 20 pixels/mm) provided detailed informations on rock formation such as features of particles and fissures that can be nearly undetected by Televiewer.

  • PDF

Analysis of Geological Factors for Risk Assessment in Deep Rock Excavation in South Korea (한국의 대심도 암반 굴착 위험도 산정을 위한 인자 분석)

  • Ihm, Myeong Hyeok;Lee, Hana
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.211-220
    • /
    • 2021
  • Tunnel collapse often occurs during deep underground tunneling (> 40 m depth) in South Korea. Natural cavities as well as water supply pipes, sewer pipes, electric power cables, artificial cavities created by subway construction are complexly distributed in the artificial ground in the shallow depths of the urban area. For deep tunnel excavation, it is necessary to understand the properties of the ground which is characterized by porous elements and various geological structures, and their influence on the stability of the ground. This study analyzed geological factors for risk assessment in deep excavation in South Korea based on domestic and overseas case study. As a result, a total of 7 categories and 38 factors were derived. Factors with high weights were fault and fault clay, differential stress, rock type, groundwater and mud inrush, uniaxial compressive strength, cross-sectional area of tunnel, overburden thickness, karst and valley terrain, fold, limestone alternation, fluctuation of groundwater table, tunnel depth, dyke, RQD, joint characteristics, anisotropy, rockburst and so forth.

Geologic Structure and Rocks as Geotechnical Risk Factors at Intermediate depth Tunneling in Korea (한국의 대심도 터널 지반 위험인자로서 암석과 지질구조)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.551-557
    • /
    • 2022
  • Geotechnical risk factors encountered in intermediate-depth underground tunnel construction are diverse, and the types and standards of risk factors are different according to the depth and regional geological characteristics of Korea. In order to understand the effects of geological characteristics and geologic structure on safety, which show various porous characteristics of urban underground complex ground, the risk factors of intermediate-depth rock mass in Korea were analyzed based on domestic and foreign cases. As a result of the study, seven categories affecting the stability of the intermediate-depth tunneling, namely, geologic structure, rock characteristics, hydrogeology, overburden, high stress, ground characteristics and artificial structures, and about 22 risk factors were derived. We present the risk criteria and interval values for risk evaluation of faults, folds, dikes, and rocks that have the greatest influence among risk factors. Criteria and interval values for other risk factors are under study.

D$\acute{e}$veloppement d'un Programme d'$\acute{E}$cotourisme dans la R$\acute{e}$gion de Yeosu en Coree du Sud: le Cas de l'$\hat{I}$le de Sado et de son Relief Caract$\acute{e}$ristique (지형 특성에 기반한 여수시 사도일원의 생태관광 프로그램 구성)

  • Lee, Jeong-Hun
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.6
    • /
    • pp.738-752
    • /
    • 2011
  • La c$\hat{o}$te m$\acute{e}$ridionale de la Cor$\acute{e}$e du sud, et principalement la ville de Yeosu et ses environs pr$\acute{e}$sentent un int$\acute{e}$r$\hat{e}$t particulier puisque le paysage offre de nombreuses presqu'$\hat{i}$les, baies et $\hat{i}$les. Pour tirer profit de ces paysages naturels il est d'abord n$\acute{e}$ssaire de les prot$\acute{e}$ger. Malgr$\acute{e}$ la haute valeur de ces paysages naturels, ils demeurent peu connus et les analyses $\acute{e}$cotouristiques de la ville de Yeosu et ses environs sont encore incompl$\grave{e}$tes. Par ailleurs, la protection de ces paysages naturels est rendue difficile par la d$\acute{e}$sagr$\acute{e}$gation d$\hat{u}$e aux sels halo$\ddot{i}$des. Cette recherche a pour objet l'$\acute{e}$tude du tourisme physico-$\acute{e}$cologique et sa contribution au d$\acute{e}$veloppement $\acute{e}$conomique d'une r$\acute{e}$gion de Yeosu en Cor$\acute{e}$e du sud. Nous nous int$\acute{e}$ressons particuli$\grave{e}$rement au d$\acute{e}$veloppement d'une route $\acute{e}$cotouristique, aux crit$\grave{e}$res de s$\acute{e}$lection du lieu $\acute{e}$cotouristique et $\grave{a}$ la pr$\acute{e}$sentation des explications touristiques, en tenant compte de l'$\hat{i}$le de Sado et de ses paysages naturels sur le plan de l'$\acute{e}$cotourisme. Il y a plusieurs ressources $\acute{e}$cotouristiques sur l'$\hat{i}$le de Sado et dans ses environs: la plage de sable et la falaise de l'$\hat{i}$le de Sado; les traces fossiles de dinosaures, la ripple-mark et la crevasse dans le sol boueux de l'$\hat{i}$le de Joungdo; le tombolo, l'affleurement tufac$\acute{e}$ et le dyke de l'$\hat{i}$le de Silouseom; le trou provoqu$\acute{e}$ par les sels halo$\ddot{i}$des et le dyke de l'$\hat{i}$le de Jangsado; la mer ass$\acute{e}$ch$\acute{e}$e entre l'$\hat{i}$le de Naquek et l'$\hat{i}$le de Choudo. On a, g$\acute{e}$n$\acute{e}$ralement, d$\acute{e}$velopp$\acute{e}$ les reliefs li$\acute{e}$s $\grave{a}$ la couche s$\acute{e}$dimentaire et les fossiles de la derni$\grave{e}$re p$\acute{e}$riode du m$\acute{e}$sozo$\ddot{i}$que. La route $\acute{e}$cotouristique part de l'embarcad$\grave{e}$re de l'$\hat{i}$le de Sado et continue du Nord jusqu'au Sud.

  • PDF

Ore Mineralization of The Hadong Fe-Ti-bearing Ore Bodies in the Hadong-Sancheong Anorthosite Complexes (하동-산청 회장암체 내 부존하는 하동 함 철-티탄 광체의 광화작용)

  • Lee, In-Gyeong;Jun, Youngshik;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.35-44
    • /
    • 2017
  • The Hadong-Sancheong Proterozoic anorthosite complex occurs in the southwestern region of the Ryongnam massif. The geology of the area mainly consists of metamorphic rocks of the Jirisan metamorphic complex as basement rocks, charnockite, and the Hadong-Sancheong anorthosite, which are intruded by the Mesozoic igneous rocks. Hadong-Sancheong anorthosite complex is divided into the Sancheong anorthosite and the Hadong anorthosite which occur at north-southern and south area of the Jurassic syenite, respectively. The Hadong Fe-Ti-bearing dike-like ore bodies developed intermittently in the Hadong anorthosite with north-south direction and extend about 14 km. The Hadong Fe-Ti-bearing ore bodies consist mainly of magnetite and ilmenite with rutile, titanite, and minor amounts of sulfides(pyrrhotite, pyrite, chalcopyrite and sphalerite). The Hadong Fe-Ti-bearing ore bodies show a paragenetic sequence of magnetite-ilmenite ${\rightarrow}$ magnetite-ilmenite-pyrrhotite ${\rightarrow}$ ilmenite-pyrrhotite-rutile-titanite(and/or pyrite) ${\rightarrow}$ sulfides. Equilibrium thermodynamic interpretation of the mineral paragenesis and assemblages indicate that early Fe-Ti-bearing ore mineralization in the ore bodies occurs at about $700^{\circ}C$ which corresponds to oxygen fugacity of about $10^{-11.8}{\sim}10^{-17.2}$ atm with the decrease tendency of sulfur fugacity to about $10^0$ atm as equilibrium of $Fe_3O_4-FeS$. The change of ore mineral assemblages from Fe-Ti-bearing minerals to sulfides in late ore mineralization of the ore bodies indicates that oxygen fugacity would have slightly decreased to ${\geq}10^{-20.2}$ atm and increased sulfur fugacity to ${\geq}10^0$ atm.

Geology and Soils of Chojeong-Miwon Area (초정-미원지역의 지질과 토양에 관한 연구)

  • 나기창
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.13-28
    • /
    • 2000
  • Chojeong area is mainly composed of the Ogcheon Group which consists of regionally metamorphosed, age-unknown sedimentary rocks. In the northwestern parts, the Group is intruded by the Jurassic Daebo granite and Cretaceous felsic and mafic dykes. The lowermost, Midongsan Formation which consists of milky white impure quartzite, crops out along the anticline axes with N40E trend. Ungyori quartzite Formation is intercalated with quartzite and slate. Miwon Formation is most widely exposed in the area and consists mainly of phyllitic sandy rocks with a thin crystalline limestone bed. Hwajeonri Formation is divided into two parts, pelitic lower and calcareous upper parts, composed with phyllite and slate. Changri and Hwanggangri Formations are typical members of Ogcheon Group, the former bearing coally graphite seams consists mainly of black slate and phyllite with intercalated greenish grey phyllite, the latter is pebble bearing phyllite formation of which matrix and pebbles are variable in compositions and size. Biotite granite, porphyritic granite and two mica granite belong to Jurassic so-called Dabo granite. They intruded the Ogcheon Group forming vast contact metarnophic zone. Quartz porphyry, mafic dyke and felsite intruded along the marginal zone of porphyritic granite batholith and fracture of NS trend. Main structural lineaments in Ogcheon Group shows N25-45E, NS and N30-45W trends. The N25-45E trends are mainly from general ductile deformation during regional metamorphism, showing isoclinal folding, Fl foliations and lithological erosional characters. Some of these trends are due to normal faults. The NS and N30-45W trends represent brittle deformation including faults and joints. In the area of granitic batholith, NS to N30- 45 trends are from the direction of dykes. In the soils of the area, average contents of heavy metal elements such as Cd, Cr, Cu, Pb, and Zn are 0.2, 50.6, 35.5, 27.9, and 93.4 ppm respectively, which are not higher than the average values of natural soils, under the tolerable level. Enrichment Index does not show any heavy metal pollution in the area. Average depths of weathering(5m vs. 2m), porosities(43.94 vs. 51.80), densities(l.29 vs. 1.15), and permeabilities(2.52 vs. 8.07) are comparable in granite areas and in the phyllite areas of Ogcheon Group.

  • PDF

Deformation structures of the Jurassic Ogcheon granite and the Honam Shearing, Ogcheon Area, Korea (옥천지역 쥬라기 옥천화강암의 변형구조와 호남전단운동)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.19-30
    • /
    • 2010
  • The Jurassic Daebo Ogcheon granite is distributed in the Ogcheon area which is located in the central part of the Ogcheon Belt, Korea. This paper newly examines the timing of Honam shearing on the basis of the petrofabric researches on the deformation structures of the Ogcheon granite. The structural shape of Ogcheon granite is mainly characterized by a wedge shaped of E-W trend and an elongate shape of ENE trend in geological map and by contacts parallel to the regional S1 foliation in the host Ogcheon supergroup. It indicates that the pluton was permittedly emplaced after the S1 formation. The main deformation structures are marked by a solid-state tectonic foliation of N-S trend, which passes through the contact of the pluton, and by an aplitic dyke of E-W trend, and by sinistral, NW and E-W oriented shear zones on the eastern border of the pluton. The petrofabric study on the main deformation structures suggests that the tectonic foliation and the aplitic dyke were formed by the Honam dextral strike-slip shearing of (N)NE trend at ca. $500{\sim}450^{\circ}C$ deformation temperature, and that the sinistral shear zones could be induced by the dextral rotation of the pluton from its original site of intrusion, that is, by the shear strain which is due to sliding of the pluton past the host rocks. The history of emplacement and deformation of the Ogcheon granite and the previous results on the timing of Honam shearing would be newly established and reviewed as follows. (1) Early~Middle Jurassic(187~170 Ma); intrusion of syntectonic foliated granite related to Early Honam shearing, (2) Middle Jurassic(175~166 Ma); main magmatic period of Jurassic granitoids, the permitted emplacement of the Ogcheon granite, (3) Middle~Late Jurassic(168~152 Ma); main cooling period of Jurassic granitoids, the deformation of the Ogcheon granite related to Late Honam shearing. Thus, this study proposes that the Honam shear movement would occur two times at least during 187~152 Ma (ca. 35 Ma) through the intertectonic phase of 175~166 Ma.