DOI QR코드

DOI QR Code

Geologic Structure and Rocks as Geotechnical Risk Factors at Intermediate depth Tunneling in Korea

한국의 대심도 터널 지반 위험인자로서 암석과 지질구조

  • 임명혁 (대전학교 건설안전공학과)
  • Received : 2022.04.07
  • Accepted : 2022.04.30
  • Published : 2022.05.31

Abstract

Geotechnical risk factors encountered in intermediate-depth underground tunnel construction are diverse, and the types and standards of risk factors are different according to the depth and regional geological characteristics of Korea. In order to understand the effects of geological characteristics and geologic structure on safety, which show various porous characteristics of urban underground complex ground, the risk factors of intermediate-depth rock mass in Korea were analyzed based on domestic and foreign cases. As a result of the study, seven categories affecting the stability of the intermediate-depth tunneling, namely, geologic structure, rock characteristics, hydrogeology, overburden, high stress, ground characteristics and artificial structures, and about 22 risk factors were derived. We present the risk criteria and interval values for risk evaluation of faults, folds, dikes, and rocks that have the greatest influence among risk factors. Criteria and interval values for other risk factors are under study.

대심도 지하 터널 공사에서 마주치는 지반공학적 위험인자는 다양하며, 심도와 한국의 지역적 지질특성에 따라 위험인자의 종류와 기준이 다르다. 도심 지하 복합 지반의 다양한 다공질의 특성을 보이는 지질의 특성 및 지질구조가 안전성에 미치는 영향을 이해하기위해 국내외 사례를 바탕으로 한국의 대심도 암반의 위험 인자를 분석하였다. 연구 결과 대심도 터널지반의 안정성에 영향을 주는 7개의 카테고리들 즉, 지질구조, 암반특성, 수리지질, Overburden, 높은 응력, 지반특성 및 인공 구조물과 약 20 여개의 위험인자들이 도출 되었다. 위험인자들 중 가장 영향력이 큰 단층, 습곡, 암맥 및 암석 종류에 따른 위험기준 및 위험산정을 위한 구간 값을 제시한다. 다른 인자들의 기준과 구간 값은 연구 중에 있다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 (도심 지하 교통 인프라 건설 및 운영기술 고도화 연구, 과제번호: 20UUTI-B157786-01) 지원으로 수행되었음으로 이에 깊은 감사를 드립니다.

References

  1. Ihm, Myeong-Hyeok, Hana Lee, 2021, Analysis of Geological Factors for Risk Assessment in Deep Rock Excavation in South Korea, TUNNEL & UNDERGROUND SPACE Vol.31, No.4, pp. 211-220., (in Korean with English Abstract). https://doi.org/10.7474/TUS.2021.31.4.211
  2. Ministry of Land, Infrastructure and Transportation in Korea, 2019. 대심도 교통시설사업의 원활한 추진을 위한 제도개선 착수, (in Korean with English Abstract).
  3. Yassaghi, A. and Salari-Rad, H., 2005. Squeezing rock conditions at an igneous contact zone in the Taloun tunnels, Tehran-Shomal freeway, Iran: a case study, International Journal of Rock Mechanics and Mining Sciences, Vol. 42, pp. 95-108. https://doi.org/10.1016/j.ijrmms.2004.07.002
  4. Zhao, J., Gong, Q.M., Eisensten, Z., 2007. Tunnelling through a frequently changing and mixed ground: A case history in Singapore, Tunnelling and Underground Space Technology Vol. 22, pp. 388-400. https://doi.org/10.1016/j.tust.2006.10.002
  5. Zhang, C., Feng, X. T., Zhou, H., Qiu, S., and Wu, W., 2012. Case histories of four extremely intense rockbursts in deep tunnels, Rock Mechanics & Rock Engineering, Published Online.
  6. M. Gharizade V., A. Golshani and R. Nemati, 2015, Behavior of circular tunnels crossing active faults, Acta Geodyn. Geomater., 12, 4, 363-376.
  7. Okada, A., Watanabe, M., Sato, H., Jun, M.S., Jo, W.R., Kim, S.K., Jeon, J.S., Chi, H.C. and Oike, K., 1994, Active fault topography and trench survey in the central part of the Yangsan fault, south Korea, Journal of Geography, 103, 111-126(in Japanese). https://doi.org/10.5026/jgeography.103.2_111
  8. Ihm, Myeong-Hyeok, 2020, Research Planning for Utilization and Investigation of Earthquake Faults at Underground Engineering in South Korea, Korean Society of Civil Engineers, 2020 Fall Conference, Jeju.
  9. 김종우, 2019, 축소모형실험을 통한 지하철 병설터널의 안정성평가 사례연구, Tunnel and Underground Space, 425-438. https://doi.org/10.7474/TUS.2019.29.6.425
  10. Paltrinieri, E. amd Zhao, J., 2015, TBM Tunnelling in Faulted and Folded Rocks, 105p.
  11. Twiss anf Moores, 1992, Stuctural Geology, Freedman & Company, 532p.
  12. Ted Nye, David Mares, 2015, Monitoring of a shallow cover tunnel driven under live railway tracks, Conference: Ninth International Symosium on Field Measurement in Geomechanics, Sydney, Australia.
  13. Sean Morris, 2021, Why Beaufort's Dyke is not a good location for a transport bridge or tunnel between Northern Ireland and Scotland, NFLA Radioactive Waste Policy Briefing 84.
  14. L.R. e Sousa, T. Miranda, R.L. Sousa, J. Tinoco, 2018, Deep underground engineering and the use of artificial intelligence techniques, Int. J. Earth Environ. Sci., 3, 158.