• Title/Summary/Keyword: 알코올 연료

Search Result 47, Processing Time 0.023 seconds

Characterization of NaX zeolite catalyst as the amount of KOH for the Biodiesel Production (NaX 제올라이트 촉매에서 KOH 담지량에 따른 바이오디젤 합성 특성)

  • Chang, Duk-Rye;Kim, Jin-Hyeok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.83-84
    • /
    • 2008
  • 바이오 디젤은 석유기반 연료들을 대신할 수 있는 대체연료일 뿐만 아니라 재생가능자원으로부터 얻을 수 있다는 장점을 가지고 있다. 바이오 디젤은 동 식물성 유지를 이용해서 알코올과 촉매 존재하에서 제조되며, 주로 KOH, NaOH 등 균질촉매를 이용하여 제조하는데 이는 폐수 발생이 많고 공정 비용이 많이 든다는 단점이 있다. 따라서 최근에는 폐기물 발생이 없고 촉매의 제거가 편리한 비균질촉매의 개발이 이루어지고 있다. 본 연구에서는 NaX 제올라이트 촉매에 KOH를 담지시켜 염기도의 증가에 따라 바이오디젤의 제조특성에 미치는 촉매특성을 조사해 보았다. NaX 제올라이트 촉매에 KOH 담지량이 증가와 반응시간이 증가함에 따라 바이오디젤 생성량은 증가하였다.

  • PDF

Quality property of bioethanol blends & counterplan of infrastructure (바이오에탄올 혼합가솔린 품질특성 및 유통인프라 대응)

  • Jung, Choong-Sub
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.102-106
    • /
    • 2006
  • 에탄올은 금속, 고무 수지를 부식시키고 열화시키기 때문에 FFV 등 알코올 대응차량이 아닌 경우 에탄올 허용도가 제한되고 있으며, 물과의 상호용해성과 흡습성으로 수분혼입에 의한 상분리가 발생하여 혼합가솔린의 유통에서의 취급에 어려움이 야기되고 있다. 또한, 에탄올은 가솔린과 혼합되면 공비현상으로 인하여 50% 유출온도가 크게 떨어지고 증기압이 7kPa 정도 상승을 초래하는 점도 간과하지 않을 수 없다. 따라서, 자동차용휘발유에 에탄올을 혼입하여 사용할 경우, 가솔린기재를 적절히 선택하여 적정품질을 유지하여야 하며 무엇보다도 에탄을 혼입농도에 따른 저장탱크와 주유기 등의 부품에의 영향과 저장시의 상분리 문제를 충분히 규명하여 유통인프라에서의 적절한 대응책이 마련되어져야 한다. 유통 인프라 대응을 위해서는 우선 생산단계에서 수분 혼입을 최소화하기 위하여 저유소의 출하지점에서 서브옥탄가솔린과 에탄올을 라인브랜딩에 의해 제조하는 방법이 가장 타당하며, 수송부문에서는 탱크로리 등의 공급라인인 파이프와 실링 재질 등에 대해서 면밀한 검토가 필요하다고 할 수 있다. 주유소에서의 대응은 에탄을 혼합연료와 직접 접촉하는 연료계 등 부품재질을 내부식성의 재질로 변환시켜야 하며, 수분혼입을 최소화하기 위한 이중탱크 설치, 지하탱크 환기구내의 대기벨브 설치 등이 필요하며, 기타, 품질 및 수분관리 대책 등도 마련되어야 할 것이다.

  • PDF

The Study on Effect of Emissions and Performance of a Conventional Vehicle using the High Concentration Alcohol Blended Petroleum Product (고농도 알코올 혼합 석유제품이 자동차 성능 및 배출가스에 미치는 영향 연구)

  • KIM, SUNG-WOO;DOE, JIN-WOO;KIM, KI-HO;HA, JONG-HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.629-637
    • /
    • 2015
  • As concern about energy security and global warming many countries have been making effort to reduce fossil fuel. In the case of US, as one of the efforts, the standards of the alcohol vehicle fuels(including blended with gasoline) have been established. Alcohol is known that make some trouble concerning startability, durability and corrosion when using as fuel of a conventional vehicle. For these reason, alcohol usage needs not only the fuel standard, but also a modified car. In the case of Korea, although there are no the standard and the modified vehicle yet, high concentration alcohol blended fuel has being sold at illegal market. In this study, exhaust gas and performance of the conventional vehicle that alcohol(methanol and isopropyl alcohol) blends were fueled were measured to notify danger of using them without preparation of institutional arrangements. Also, to analyze correlation characteristics of the fuels and them, property test of the fuels was conducted. The test result show that bad-startability caused by low RVP and high T10 affected increase in NMOG and CO. NOx was increased under the highest short term fuel trim caused by high Oxygen content and low NHV of alcohol. According to increasing as alcohol content, fuel economy and acceleration ability were decreased but $CO_2$ was not significantly decreased.

Study on Emission Characteristics Depending on Mixing Fuels of Bio-Alcohol (바이오알코올 혼합연료에 따른 배출 특성 연구)

  • KIM, SHIN;KIM, JAE-KON;LEE, MIN-HO;HWANG, IN-HA;LEE, JUNG-MIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.654-660
    • /
    • 2018
  • The dependence on global fossil fuels has been gradually reducing all over the world. Some countries which recognized the important of environmental values were joining to carry out international GHG goals. Our country has also participated with high targets (37% reduction compared to BAU 2030 years). So we need to supply materials of lower GHG value such as a bio-diesel. Bio-alcohol is one of the similar bio-fuels that can be reducing GHG. A lot of countries had tried to commercialize through various R&D for bio-alcohol. In this study, we analyzed the fuel characteristics of bio-alcohol fuel produced by domestic technology. And we evaluated a possibility to use as vehicle fuel through mixing of bio-alcohol and gasoline. The mixed fuels were satisfied with 2.3 wt% of oxygen content that is standard of the petroleum and petroleum alternative fuel business Act. We tried to evaluate a emission characteristic of vehicle by mixed fuel. In accordance with the results we tried to find a correlation between fuel and emission.

Global Trends of Bioethanol Science Information (바이오에탄올 학술정보 분석)

  • Kil, Sang-Cheol;Kim, Sang-Woo;Oh, Mihn-Soo
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.589-597
    • /
    • 2012
  • Recently, an understanding of new sources of liquid hydrocarbons such as bioethanol is economically very important. Bioethanol is actually ethyl alcohol or also referred to as ethanol, identical to drinking alcohol by its composition. There are mainly two ways of producing ethanol, namely by synthesis of hydrocarbons and from biomass. Only the second approach deserves the terminology 'bioethanol'. The present dissertation is also designed with purpose of developing the energy-saving process for the separation of bioethanol. The world population is expected to grow past 8 billion by 2030 which are almost 60% in Asia Pacific. History has shown that energy use rises much faster than population expands. World wide demand for energy will increase significantly during the next 15 years driven by population growth and the transition of emerging markets into the global economy. In developing nations, a smaller increment in GDP per capita yields a higher increment in energy consumption compared to developed countries. In this study, we analised total 2,454 dissertations for the bioethanol during the 2001~2012 periods by the programs of 'web of science' and 'recently developped program by Korea Institute of Science Technology Information'.

Combustion and Emission Characteristics of High-Compression-Ratio Diesel Engine Fueled with Bio Oil-Ethanol Blended Fuel (바이오 오일-에탄올 혼합 연료의 고압축비 디젤엔진에서의 연소 및 배기특성)

  • Kim, Tae Young;Lee, Seok Hwan;Jang, Young Woon;Kim, Ho Seung;Kang, Kern Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.501-511
    • /
    • 2014
  • Bio-oil derived from biomass through fast pyrolysis process has the potential to displace a significant amount of petroleum fuels. However, the use of bio-oil in a diesel engine is very limited because of its poor properties, e.g., its low energy density, low cetane number, and high viscosity. Therefore, bio-oil should be emulsified or blended with other fuels that have high centane numbers. Because bio-oil has poor miscibility with petroleum fuels, the most suitable candidate fuels for direct mixing are alcohol fuels. In this study, bio-oil was blended with ethanol, and two types of cetane improvers were added to a blended fuel to improve the self-ignition property. The two types of cetane improvers, PEG 400 and 2-EHN, made it possible for bio-oil blended fuels to combust in a diesel engine with a maximum bio-oil content of 15 wt%. A high-compression-ratio piston is also proposed for the combustion of bio-oil in a diesel engine.

Characterization of PTFE Electrode Made by Bar-Coating Method Using Alcohol-Based Catalyst Slurry (알코올계 촉매 슬러리를 활용한 바 코팅으로 제조된 PTFE 전극의 형성 및 특성 조사)

  • JUNG, HYEON SEUNG;KIM, DO-HYUNG;PAK, CHANHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.3
    • /
    • pp.276-283
    • /
    • 2020
  • Alcohol-based solvents including ethanol (EtOH) and tert-butyl alcohol (TBA) are investigated instead of isopropanol (IPA), which is a common solvent for polytetrafluoroethylene (PTFE), as an alternative solvent for preparing the catalyst slurry with PTFE binder. As a result, the performance at 0.2 A/㎠ from the single cells from using catalyst slurries based on EtOH and TBA showed very similar value to that from the slurry using IPA, which implies the EtOH and TBA can be used as a solvent for the catalyst slurry. It is also confirmed by the very close values of the total resistance of the membrane electrode assemblies from the slurries using different solvents. In the energy dispersive spectrometry (EDS) image, the shape of crack and dispersion of PTFE are changed according to the vapor pressure of the solvent.

Influence of Low Level Bio-Alcohol Fuels on Fuel Economy and Emissions in Spark Ignition Engine Vehicles (저농도 바이오알코올 혼합 연료가 스파크 점화 엔진 차량의 연비 및 배출가스에 미치는 영향)

  • CHA, GYUSOB;NO, SOOYOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.250-258
    • /
    • 2020
  • This study was conducted to analyze the impact of low level bio-alcohols that can be applied without modification of vehicles to improve air quality in Korea. The emissions and fuel economy of low level bio-alcohols mixed gasoline fuels of spark ignition vehicles, which are direct injection and port fuel injection, were studied in this paper. As a result of the evaluation, the particle number (PN) was reduced in all evaluation fuels compared to the sub octane gasoline without oxygen, but the correlation with the PN due to the increase in the oxygen content was not clear. In the CVS-75 mode, emitted CO tended to decrease compared to sub octane gasoline, but no significant correlation was found between NMHC, NOx and fuel economy. In addition, it was found that the aldehyde increased in the oxygenated fuel, and there was no difference in terms of the amount of aldehyde generated among a series of bio-alcohol mixed fuels.

Production of Bio-Diesel Fuel by Transesterification of Used Frying Oil (폐식용유의 에스테르화 반응에 의한 바이오디젤유 제조)

  • 박영철;최주홍김성배강동원
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.159-164
    • /
    • 1996
  • Transesterification of used frying oil was investigated to produce the bio-diesel oil. Experimental conditions included molar ratio of used frying oil to alcohol (1:3, 1:5 and 1:7), concentration of catalyst (0.5, 1.0 and 1.5 wt.%), ippe of catalyst(sodium melhoxide, NaOH and KOH), reaction temperature (30, 45 and $60^{\circ}C$), and types of alcohol(methanol, ethanol and butanol). The conversion of used frying oil increased with the alcohol mixing ratio and with the reaction temperature. The effect of the type of catalysts on conversion was not significant. The highest conversion was obtained when methanol was used as alcohol. Viscosity was a little higher with the ester product over grade #2 diesel oil. But the physical properties improved significantly with transesterification, resulting in similar fuel properties with those obtained for grade #2 diesel fuel.

  • PDF