• Title/Summary/Keyword: 알칼리-활성화 슬래그 시멘트

Search Result 44, Processing Time 0.024 seconds

Effects of Moisture Absorption Coefficient of Alkali-Activated Slag-Red Mud Cement on Efflorescence (알칼리활성화 슬래그-레드머드 시멘트 모르타르의 흡수계수가 백화발생에 미치는 영향)

  • Kang, Hye Ju;Kim, Byeong gi;Kim, Jae Hwan;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.130-131
    • /
    • 2016
  • In this study, moisture absorption coefficient and efflorescence properties of Ordinary Portland cement and alkali-activated slag cement mortar were assessed according to their red mud substitution ratio. Tests were conducted to determine the cause of efflorescence, which is a significant obstacle to the recycling of red mud as a sodium activator in alkali-activated slag cement, and to find a method to control efflorescence.

  • PDF

A Study on Cementation of Sand Using Blast Furnace Slag and Extreme Microorganism (고로슬래그와 극한미생물을 이용한 모래의 고결화 연구)

  • Park, Sung-Sik;Choi, Sun-Gyu;Nam, In-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.93-101
    • /
    • 2014
  • In this study, a blast furnace slag having latent hydraulic property with an alkaline activator for resource recycling was used to solidify sand without using cement. Existing chemical alkaline activators such as $Ca(OH)_2$ and NaOH were used for cementing soils. An alkaliphilic microorganism, which is active at higher than pH 10, is tested for a new alkaline activator. The alkaliphilic microorganism was added into sand with a blast furnace slag and a chemical alkaline activator. This is called the microorganism alkaline activator. Four different ratios of blast furnace slag (4, 8, 12, 16%) and two different chemical alkaline activators ($Ca(OH)_2$ and NaOH) were used for preparing cemented specimens with or without the alkaliphilic microorganism. The specimens were air-cured for 7 days and then tested for the experiment of unconfined compressive strength (UCS). Experimental results showed that as a blast furnace slag increased, the water content and dry density increased. The UCS of a specimen increased from 178 kPa to 2,435 kPa. The UCS of a specimen mixed with $Ca(OH)_2$ was 5-54% greater than that with NaOH. When the microorganism was added into the specimen, the UCS of a specimen with $Ca(OH)_2$ decreased by 11-60% but one with NaOH increased by 19-121%. The C-S-H hydrates were found in the cemented specimens, and their amounts increased as the amount of blast furnace slag increased through SEM analysis.

A Study on Sand Cementation and its Early-Strength Using Blast Furnace Slag and Alkaline Activators (고로슬래그와 알칼리 활성화제를 이용한 모래 고결 및 조기강도에 관한 연구)

  • Park, Sung-Sik;Choi, Sun-Gyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.4
    • /
    • pp.45-56
    • /
    • 2013
  • In this study, a blast furnace slag with latent hydraulic property is used to cement granular soils without using Portland cement. When the blast furnace slag reacts with an alkaline activator, it can cement soils. The effect of amounts of blast furnace slag and types of alkaline activator on soil strength was investigated for resource recycling. Four different amounts of slag and six different activators (two naturals and four chemicals) were used for preparing specimens. The specimens were air-cured for 3 or 7 days and then tested for unconfined compressive strength (UCS). The UCS of cemented sand with slag increased, in the order of specimens mixed with potassium carbonate, calcium hydroxide, sodium hydroxide and potassium hydroxide. Chemical alkaline activator was better than natural alkaline activator. The maximum UCS of 3-days cured specimens was 3 MPa for 16% of slag with potassium hydroxide, which corresponded to 37% of one with 16% of high-early strength portland cement. As the amount of slag increased, the UCS and dry density of a specimen increased for all alkaline activator cases. As the curing time increased from 3 days to 7 days, the UCS increased up to 97%. C-S-H hydrates were found in the cemented specimens from XRD analyses. Cement hydrates were more generated with increasing amount of slag and they surrounded sand particles, which resulted in higher density.

The Strength Characteristics of Activated Multi-Component Cement with Kaolinite (카올린을 혼합한 활성화된 다성분계 시멘트의 강도 특성)

  • Kim, Tae-Wan;Kim, Im-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.593-600
    • /
    • 2016
  • The paper presented investigates the effects of kaolinite on strength properties of alkali-activated multi-component cement. The binders of this study was blended of ground granulated blast furnace slag (GGBFS), fly ash (FA), silica fume (SF) and kaolinite (KA). In this study, the specimens of combination of 20%~70% GGBFS, 10%~60% FA, 10% SF (constant ratio) and 10%~50% KA binder were used for strength properties tests. The water/binder ratio was 0.5. The binders (GGBFS + FA + SF + KA) was activated by sodium hydroxide (NaOH) and sodium silicate ($Na_2SiO_3$) was 10% by total binder weight (10% NaOH + 10% $Na_2SiO_3$). The research carried out is on the compressive strength, water absorption, ultrasonic pulse velocity (UPV) and X-ray diffraction (XRD). The compressive strength decreased as the contents of KA increase. One of the major reason for this is the low reactivity of KA compared with other raw materials used as precursors such as GGBFS or FA. The presence of remaining KA indicates that the initially used quantity has not fully reacted during hydration. Moreover, the results have indicated that increased of KA contents decreased UPV under all experimental conditions. The drying shrinkage and water absorption increased as the content of KA increase. Test result clearly showed that the strength development of multi-component blended cement were significantly dependent on the content of KA and GGBFS.

The Strength Properties Activated Granulated Ground Blast Furnace Slag with Aluminum Potassium Sulfate and Sodium Hydroxide (칼륨명반과 수산화나트륨으로 활성화된 고로슬래그 미분말의 강도 특성)

  • Kim, Taw-Wan;Hahm, Hyung-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.95-102
    • /
    • 2015
  • In this paper, the effects of sodium hydroxide (NaOH) and aluminum potassium sulfate ($AlK(SO_4)_2{\cdot}12H_2O$) dosage on strength properties were investigated. For evaluating the property related to the dosage of alkali activator, sodium hydroxide (NaOH) of 4% (N1 series) and 8% (N2 series) was added to 1~5% (K1~K5) dosage of aluminum potassium sulfate ($AlK(SO_4)_2{\cdot}12H_2O$) and 1% (C1) and 2% (C2) dosage of calcium oxide (CaO). W/B ratio was 0.5 and binder/ fine aggregate ratio was 0.5, respectively. Test result clearly showed that the compressive strength development of alkali-activated slag cement (AASC) mortars were significantly dependent on the dosage of NaOH and $AlK(SO_4)_2{\cdot}12H_2O$. The result of XRD analysis indicated that the main hydration product of $NaOH+AlK (SO_4)_2{\cdot}12H_2O$ activated slag was ettringite and CSH. But at early ages, ettringite and sulfate coated the surface of unhydrated slag grains and inhibited the hydration reaction of slag in high dosage of $NaOH+AlK(SO_4)_2{\cdot}12H_2O$. The $SO_4{^{-2}}$ ions from $AlK(SO_4)_2{\cdot}12H_2O$ reacts with CaO in blast furnace slag or added CaO to form gypsum ($CaSO_4{\cdot}2H_2O$), which reacts with CaO and $Al_2O_3$ to from ettringite in $NaOH+AlK(SO_4)_2{\cdot}12H_2O$ activated slag cement system. Therefore, blast furnace slag can be activated by $NaOH+AlK(SO_4)_2{\cdot}12H_2O$.

Effect of Fine Particle Cement and Recycled Aggregates as Alkali Activator on the Engineering Properties and Micro-Structure of High Volume Blast Furnace Slag Concrete (알칼리 자극제로서 미분시멘트와 순환골재가 고로슬래그 다량치환 콘크리트의 공학적 특성 및 미세구조에 미치는 영향)

  • Han, Min-Cheol;Lee, Hyang-Jae;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.602-608
    • /
    • 2013
  • The aim of this study is to investigate experimentally the effect of the combination of fine particle cement with high Blaine fineness (FC) and recycled aggregates on the engineering properties and micro structure of high volume blast furnace slag (BS) concrete with 75% BS and 21 MPa. FC manufactured by particle classification at the plant with Blaine fineness of more than $7000cm^2/g$ was used as additional alkali activator for high volume blast furnace slag concrete made with recycled fine and coarse aggregates. FC was replaced by 15, 20 and 25% OPC. Test results showed that the incorporation of FC resulted in an increase in the compressive strength compared to BS concrete without FC by as much as 30% due to accelerated hydration and associated latent hydraulic reaction. It was found that the use of FC and recycled aggregates played an important role in activating BS for high volume BS concrete by offering sufficient alkali.

Characteristic of Alkali-Activated Slag Red Mud Cement Concrete according to Liquefaction Red mud Input Method (액상 레드머드 첨가방식에 따른 ASRC 콘크리트의 특성)

  • Hwang, Byoung Il;Kang, Hye Ju;Park, Kyung Su;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.134-135
    • /
    • 2018
  • In this paper, we investigate the characteristic of ASRC concrete with the addition of liquefaction red mud using red ud which can be used as an alkali activator of alkali-activated slag cement. as a result, the compressive strength and the efflorescence area increased, and as the amount of liquid red mud increased, the compressive strength decreased and the efflorescence area increased.

  • PDF

Properties of Non-Sintered Cement Mortar using Alkali and Sulfate Mixed Stimulants Accroding to Curing Method (양생방법에 따른 알칼리 및 황산염 복합자극제를 사용한 비소성 시멘트 모르타르의 특성)

  • Park, Sung-Joon;Kim, Ji-Hoon;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.237-244
    • /
    • 2015
  • Entering the 20th century since the industrial revolution, the cement has been widely used in the field of construction and civil engineering due to the remarkable development of construction industry. However, result from that development, each kind of industrial by-products and waste and the carbon dioxide generated in the process of cement production cause air pollution and environmental damage so earth is getting sick now slowly. Therefore, we have to recognize importance about this. It means that the time taking specific and long-term measures have come. In this research paper, as substitution of the cement generating environmental pollution, we investigate the hydration reaction of non-Sintered Cement mortar mixed with GBFS, active stimulant of alkaline and sulphate series by using SEM and XRD, mechanical and chemical properties according to the curing method. As a result of this experiment, NSC realized outstanding strength for water curing and steam curing. It means that it has a good possibility as substitution of cement. From now on, it can be used for structure satisfying specific standard. We expect to find a substitution of outstanding cement by progressing continuous research making the best use of pros and cons according to the curing method.

Mechanical Properties of Granulated Ground Blast Furnace Slag on Blended Activator of Sulfate and Alkali (황산염 및 알칼리계의 혼합 활성화제에 대한 고로슬래그미분말의 역학적 특성)

  • Kim, Tae-Wan;Jun, Yu-Bin;Eom, Jang-Sub
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.104-111
    • /
    • 2015
  • This study shows the mechanical properties of alkali-activated slag cement (AASC) synthesized using sulfate with NaOH solution. The used sulfates were calcium sulfate ($CaSO_4$, denoted CS) and sodium sulfate ($Na_2SO_4$, denoted SS). The replacement ratio of sulfates was 2.5, 5.0, 7.5 and 10.0% by weight of slag. NaOH solution of 2M and 4M concentration was used. A sample was activated with sulfate and activated with blended activator (blending NaOH solution with sulfate) respectively. 24 mix ratios were used and the water-binder weight ratio for the test was set 0.5. This research carried out the compressive strength, flexural strength, ultrasonic pulse velocity (UPV), absorption and X-ray diffraction (XRD). In the case of samples with CS, sample with 7.5% CS, sample with 2M NaOH+5.0% CS and sample with 4M NaOH+5.0% CS showed the good performance in the strength development. In the case of samples with SS, sample with 10.0% SS, sample with 2M NaOH+7.5% SS and sample with 4M NaOH+2.5% SS obtained good performance in strength. The results of UPV and water absorption showed a similar tendency to the strength properties. The XRD analysis of samples indicated that the hydration products formed in samples were ettringite, CSH and silicate phases. In this study, it is indicated that when compared to the use of sulfate only, the use of both sulfate and NaOH solution makes mechanical properties of AASC better.

Evaluation of Flexural Performance of Eco-Friendly Inorganic Binding Material RC Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 무기결합재 철근콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Kim, Jin-Hwan;Jang, Kie-Chang
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.261-269
    • /
    • 2013
  • In this study, it was developed eco-friendly inorganic binding material concrete using ground granulated blast furnace slag and alkali activator (water glass, sodium hydroxides). Eight reinforced concrete beam using inoganic binding material concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, type of admixture and admixture. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The eco-friendly concrete using inorganic binding material encouraged alkali activation reaction was rapidly hardening speed and showed possibility as a high strength concrete. Also, the RC beams using new materials showed similar behavior and failed similarly with RC beam used portland cement. It is thought that eco-friendly inorganic binding material concrete can be used with construction material and product as a basic research to replace cement concrete. If there is application to structures in PC member as well as production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.