DOI QR코드

DOI QR Code

A Study on Cementation of Sand Using Blast Furnace Slag and Extreme Microorganism

고로슬래그와 극한미생물을 이용한 모래의 고결화 연구

  • Park, Sung-Sik (Dept. of Civil Engrg., Kyungpook National Univ.) ;
  • Choi, Sun-Gyu (Dept. of Civil Engrg., Kyungpook National Univ.) ;
  • Nam, In-Hyun (Geologic Hazards Dept., Korea Institute of Geoscience and Mineral Resources)
  • 박성식 (경북대학교 공과대학 건축토목공학부 토목공학전공) ;
  • 최선규 (경북대학교 공과대학 건축토목공학부 토목공학전공) ;
  • 남인현 (한국지질자원연구원 지질재해연구실)
  • Received : 2013.11.06
  • Accepted : 2014.01.14
  • Published : 2014.01.31

Abstract

In this study, a blast furnace slag having latent hydraulic property with an alkaline activator for resource recycling was used to solidify sand without using cement. Existing chemical alkaline activators such as $Ca(OH)_2$ and NaOH were used for cementing soils. An alkaliphilic microorganism, which is active at higher than pH 10, is tested for a new alkaline activator. The alkaliphilic microorganism was added into sand with a blast furnace slag and a chemical alkaline activator. This is called the microorganism alkaline activator. Four different ratios of blast furnace slag (4, 8, 12, 16%) and two different chemical alkaline activators ($Ca(OH)_2$ and NaOH) were used for preparing cemented specimens with or without the alkaliphilic microorganism. The specimens were air-cured for 7 days and then tested for the experiment of unconfined compressive strength (UCS). Experimental results showed that as a blast furnace slag increased, the water content and dry density increased. The UCS of a specimen increased from 178 kPa to 2,435 kPa. The UCS of a specimen mixed with $Ca(OH)_2$ was 5-54% greater than that with NaOH. When the microorganism was added into the specimen, the UCS of a specimen with $Ca(OH)_2$ decreased by 11-60% but one with NaOH increased by 19-121%. The C-S-H hydrates were found in the cemented specimens, and their amounts increased as the amount of blast furnace slag increased through SEM analysis.

본 논문에서는 자원 재활용을 위해 시멘트를 전혀 사용하지 않고 잠재 수경성을 지닌 고로슬래그와 알칼리 활성화제를 이용하여 모래를 고결시키는 연구를 수행하였다. 기존 수산화칼슘이나 수산화나트륨과 같은 화학적 알칼리 활성화제뿐 아니라 pH 10 이상에서 생존하는 극한미생물을 화학적 알칼리 활성화제에 혼합한 미생물 알칼리 활성화제를 개발하여 흙의 고결 가능성을 평가하였다. 낙동강모래에 고로슬래그의 함유량을 네 종류(4, 8, 12, 16%)로 달리하면서 화학적 또는 미생물 알칼리 활성화제를 혼합하여 공시체를 제작한 다음 7일 동안 대기중 양생시킨 후 일축압축시험을 실시하였다. 알칼리 활성화제의 종류에 관계없이 고로슬래그의 함유량이 4%에서 16%로 증가함에 따라 건조밀도가 증가하면서 일축압축강도는 평균 178kPa에서 2,435kPa까지 증가하였다. 화학적 알칼리 활성화제를 사용한 경우, 수산화칼슘이 포함된 공시체의 일축압축강도가 수산화나트륨을 사용한 경우보다 5-54% 정도 높게 나타났다. 한편 본 연구에서 개발한 미생물 알칼리 활성화제를 사용한 경우, 수산화칼슘 성분이 포함된 공시체의 경우에는 화학적 알칼리 활성화제보다 일축압축강도가 11-60% 감소하였으나, 수산화나트륨이 포함된 경우에는 일축압축강도가 19-121% 증가하였다. 고결된 공시체에서 C-S-H 화합물이 생성되었으며, SEM분석에서 고로슬래그 함유량이 증가할수록 수화물의 양도 증가하였다.

Keywords

References

  1. Cole, D. M., Ringelberg, D. B., and Reynolds, C. M. (2012), "Small-Scale Mechanical Properties of Biopolymers", Journal of Geotechnical and Geoenvironmental Engineering, No. 138, pp. 1063-1074. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000680
  2. Jang, I. H. (2010), "Biopolymer treated Korean Residual Soil - Geotechnical behavior and Applications", Ph.D Thesis, Korea Advanced Institute of Science and Technology.
  3. Kawasaki, S., Ogata, S., Hiroyoshi, N., Tsunekawa, M., Kaneko, K., and Terajima, R. (2010), "Effect of temperature on precipitation of calcium carbonate using soil microorganisms", Journal of Japan Society of engineering Geology ,Vol.51, No.1, pp.10-18. https://doi.org/10.5110/jjseg.51.10
  4. Kim, D. H., Park, K. H., Kim, H. C., and Lee, Y. H. (2012), "Effect of Microbial Treatment Methods on Biogrout", Journal of Geotechnical and Geoenvironmental Engineering, Vol.13, No.5, pp.51-57.
  5. Kim, S. T., Do, J. N., Jo, H. S., and Chun, B. S. (2011), "Effect of Ground Strength Increase using Polysaccharide Environmentally Friendly Soil Stabilizer", Journal of the Korean Geotechnical Society, Vol.12, No.11, pp.13-21.
  6. Lee, H. J. (2011), "An Experimental study on the Alkali-activated Slag Cement Using Recycling Water of Ready mixed Concrete", Master Thesis, Hanyang University.
  7. Lee, J. H. (2013), "A Study on Soil Improvement by proliferation of Microbes", Ph.D Thesis, Hanyang University.
  8. Mitchell, J. K. and Santamarina, J. C. (2005), "Biological Considerations in Geotechnical Engineering", Journal of Geotechnical and Geoenvironmental Engineering, Vol.131, No.10, pp.1222-1233. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222)
  9. Park, S. S. and Choi, S. G. (2013), "A Study on Sand Cementation and and its Early-Strength Using Blast Furnace Slag and Alkaline Activators", Journal of the Korean Geotechnical Society, Vol.29, No.4, pp.45-56. https://doi.org/10.7843/kgs.2013.29.4.45
  10. Park, S. S., Kang, H. Y., and Han, K. S. (2007), "Development of Fly Ash/slag Cement Using Alkali-activated Reaction(1) - Compressive strength and acid corrosion resistance -", Journal of Korean Society of Environmental Engineers, Vol.29, No.7, pp. 801-809.
  11. Park, S. S., Kim, W. J., and Lee, J. C. (2011), "Effect of Biomineralizaion on the Strength of Cemented Sands", Journal of the Korean Geotechnical Society, Vol.27, No.5, pp.75-84. https://doi.org/10.7843/kgs.2011.27.5.075
  12. Terajima, R., Shimada, S., Oyama, T., and Kawasaki, S. (2009), "Fundamental study of siliceous biogrout for eco-friendly soil improvement", Journal of Japan Society of Civil Engineers C, Vol. 65, No.1, pp.120-130.
  13. Van Paassen, L. A., Ghose, R., van der Linden, T. J. M., van der Star, W. R. L., and van Loosdrecht, M. C. M. (2010), "Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment", Journal of Geotechnical and Geoenvironmental Engineering, Vol.136, No.12, pp.1721-1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382
  14. Whiffin, V. S., van Paassen, L. A., and Harkes, M. P. (2007), "Microbial carbonate precipitation as a soil improvement technique", Geomicrobiology Journal, 24, pp.417-423. https://doi.org/10.1080/01490450701436505
  15. Wu, J. Y. and Ye, H. F. (2007), "Characterization and flocculating properties of an extracellular biopolymer produced from a Bacillus subtilis DYU1 isolate", Process Biochemistry, Vol.42, pp.1114-1123. https://doi.org/10.1016/j.procbio.2007.05.006
  16. Yang, K. H. and Sim, J. I. (2008), "Compressive Strength and Shrinkage Strain of Slag-Based Alkali-Activated Mortar with Gypsum", Journal of the Korean Institute of Building Construction, Vol.8, No.1, pp.57-62. https://doi.org/10.5345/JKIC.2008.8.1.057
  17. Yokoi, H., Natsuda, O., Hirose, J., Hayashi, S., and Takasaki, Y. (1995), "Characteristics of a Biopolymer Flocculant Produced by Bacillus sp. PY-90", Journal of Fermentation and Bioengineering, Vol.79, No.4, pp.378-380. https://doi.org/10.1016/0922-338X(95)94000-H
  18. Yoon, G. L. and Kim, B. T. (2006), "Stabilizing Capability of Oyster Shell Binder for Soft Ground Treatment", Journal of the Korean Geotechnical Society, Vol.22, No.11, pp.143-149.

Cited by

  1. 극한미생물과 저가 배지를 이용한 지반고결제의 현장 적용 연구 vol.31, pp.1, 2014, https://doi.org/10.7843/kgs.2015.31.1.37