• Title/Summary/Keyword: 알칼리-골재 반응

Search Result 94, Processing Time 0.024 seconds

A study on the ecological lightweight aggregates made of bottom ashes and dredged soils (저회 및 준설토를 이용한 에코인공경량골재의 제조에 관한 연구)

  • Jeon, Hye-Jin;Kim, Yoo-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.3
    • /
    • pp.133-137
    • /
    • 2007
  • Ecological lightweight aggregates were made in order to recycle the dredged soils from the seaside construction area and the bottom ashes from the power plant. Various physical and chemical analysis were performed on them to identify their possibility for applying lightweight concrete fields. Lightweight aggregates were made of bottom ashes and dredged soils from Yongheung Island which is located 20km west away from Seoul, and all the raw materials were milled before mixing. The physical and chemical properties such as density, absorption rate, stability, alkali latency reaction, heavy metal leaching of the lightweight aggregates were tested and analysed by following the KS standard procedures. From the size analysis, the coarse aggregates showed a suitable fit on standard particle ranges; however, the fine aggregates showed a large deviation from the standard. The absorption rates were increased with decreasing weight of the aggregates. All the aggregates were turned out to be safe by the stability and heavy metal leaching test; however, some of the aggregates were confirmed on the border of harmless and possibly harmful region through the alkali latency reactivity test.

Mineralogical and Mechanical Properties of some Rocks as Aggregates and Their Suitabulity for Concrete (골재용 암석의 광물학적 및 역학적 특성과 콘크리트용으로서의 적합성 연구)

  • 진호일;민경원;연규석
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.183-193
    • /
    • 1998
  • This study was designed, firstly, to determine the mineralogical and chemical characteristics of some rock aggregates, secondly, to offer interrelationships between those and mechanical properties, and thirdly, to evaluate their suitability for concrete aggregates. Mineralogical, chemical, physical and mechanical characteristics of the studied rock aggregates indicate that granite from BJ quarry and banded gneisses from KB. HI and SK quarry, and quartzite from the Hongcheon riverside are not proper to cement concrete aggregates because of quartz's potential possibility of alkali-silica reaction, and limestone in SY quarry is proper to asphalt concrete aggregates owing to dolomite causing alkali-carbonate reaction. Augen gneiss and diorite from KB and SA quarry, respectively, are to be not suitable for concrete aggregates because of biotite contents, but augen gneiss in HI quarry and gneisses in Hongcheon riverside are proper to concrete aggregates because of mineralogical and mechanical characteristics.

Effect of Mechanical Restraint due to Steel Microfibers on Alkali-Silica Reaction in Mortars (미세 강섬유의 구속력이 모르타르의 알칼리-실리카 반응에 미치는 영향)

  • Yi, Chong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.577-584
    • /
    • 2007
  • The effect of steel microfibers (SMF) on alkali-silica reaction (ASR) was investigated using two types of reactive aggregates, crushed opal and a pyrex rod of constant diameter. Cracks are less visible in the SMF mortars compared with the unreinforced mortars. Due to crack growth resistance behavior in SMF mortar specimens, the strength loss is eliminated and the ASR products remained well confined within the ASR site. The expansion and the ASR products were characterized by microprobe analysis and inductively coupled plasma (ICP) spectroscopy. The confinement due to SMF resulted in a higher Na and Si ion concentration of the ASR liquid extracted from the reaction site. The higher concentration reduced the ASR rate and resulted in a lower reactivity of the reactive pyrex rods in SMF mortars.

The Inhibition Effect of Alkali-Silica Reaction in Concrete by Pozzolanic Effect of Metakaolin (메타카오린의 포조란 효과에 의한 콘크리트 내 알칼리-실리카 반응 억제 효과)

  • Lee Hyomin;Jun Ssang-Sun;Hwang Jin-Yeon;Jin Chi-Sub;Yoon Jihae;Ok Soo Seok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.277-288
    • /
    • 2004
  • Alkali-silica reaction (ASR) is a chemical reaction between alkalies in cement and chemically unstable aggregates and causes expansion and cracking of concrete. In the Present study, we studied the effects of metakaolin, which is a newly introduced mineral admixture showing excellent pozzolainc reaction property, on the inhibition of ASR. We prepared mortar-bars of various replacement ratios of metakaolin and conducted alkali-silica reactivity test (ASTM C 1260), compressive strength test and flow test. We also carefully analyzed the mineralogical changes in hydrate cement paste by XRD qualitative analysis. The admixing of metakaolin caused quick pozzolanic reaction and hydration reaction that resulted in a rapid decrease in portlandite content of hydrated cement paste. The expansion by ASR was reduced effectively as metakaolin replaced cement greater than 15%. This resulted in that the amounts of available portlandite decreased to less than 10% in cement paste. It is considered that the inhibition of ASR expansion by admixing of metakaolin was resulted by the combined processes that the formation of deleterious alkali-calcium-silicate gel was inhibited and the penetration of alkali solution into concrete was retarded due to the formation of denser, more homogeneous cement paste caused by pozzolanic effect. Higher early strength (7 days) than normal concrete was developed when the replacement ratios of metakaolin were greater than 15%. And also, late strength (28 days) was far higher than normal concrete for the all the replacement ratios of metakaolin. The development patterns of mechanical strength for metakaolin admixed concretes reflect the rapid pozzolanic reaction and hydration properties of metakaolin.

Physical Properties of Volcanic Rocks in Jeju-Ulleung Area as Aggregates (제주도 및 울릉도에서 산출되는 화산암의 골재로서의 물성 특징)

  • Byoung-Woon You;Chul-Seoung Baek;Kye-Young Joo
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.205-217
    • /
    • 2024
  • This study evaluated the physical characteristics and quality of volcanic rocks distributed in the Jeju Island-Ulleung Island area as aggregate resources. The main rocks in the Jeju Island area include conglomerate, volcanic rock, and volcanic rock. Conglomerate is composed of yellow-red or gray heterogeneous sedimentary rock, conglomerate, and encapsulated conglomerate in a state between lavas. Volcanic rocks are classified according to their chemical composition into basalt, trachybasalt, basaltic trachytic andesite, trachytic andesite, and trachyte. By stratigraphy, from bottom to top, Seogwipo Formation, trachyte andesite, trachybasalt (I), basalt (I), trachybasalt (II), basalt (II), trachybasalt (III, IV), trachyte, trachybasalt (V, VI), basalt (III), and trachybasalt (VII, VIII). The bedrock of the Ulleung Island is composed of basalt, trachyte, trachytic basalt, and trachytic andesite, and some phonolite and tuffaceous clastic volcanic sedimentary rock. Aggregate quality evaluation factors of these rocks included soundness, resistance to abrasion, absorption rate, absolute dry density and alkali aggregate reactivity. Most volcanic rock quality results in the study area were found to satisfy aggregate quality standards, and differences in physical properties and quality were observed depending on the area. Resistance to abrasion and absolute dry density have similar distribution ranges, but Ulleung Island showed better soundness and Jeju Island showed better absorption rate. Overall, Jeju Island showed better quality as aggregate. In addition, the alkaline aggregate reactivity test results showed that harmless aggregates existed in both area, but Ulleungdo volcanic rock was found to be more advantageous than Jeju Island volcanic rock. Aggregate quality testing is typically performed simply for each gravel, but even similar rocks can vary depending on their geological origin and mineral composition. Therefore, when evaluating and analyzing aggregate resources, it will be possible to use them more efficiently if the petrological-mineralological research is performed together.

A Experimental Study on the Alkali-Silica Reaction of Crushed Stones (Part 2 : The Influence of the Alkali Content and the Kind of Added Alkali to the Alkali-Silica Reaction) (쇄석 골재의 알칼리-실리카 반응에 관한 실험적 연구( 제 2보 : 첨가알칼리량 및 종류가 알칼리-실리카 반응에 미치는 영향))

  • 이영수;윤재환;정재동;노재호;이양수;조일호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.108-112
    • /
    • 1993
  • The term Alkali-Silica Reaction (ASR) is used to describe a reaction between certain siliceous aggregates and hydroxyl ions present in the pore fluid of a concrete. The ASR is affected by the content of alkali, the particle size and the content of reactive aggregate, water-cement ratio, humidity, temperature and so on. In this paper, the fluence of alkali content and kind of added alkali to the ASR was studied. As a result, the more the content of alkali was increased, the more the mortar-bar was expand and the expansion of mortar-bar was showed differently with the added alkali kinds, The reaction products by ASR were observed by SEM(Scanning Electron Microscope) and analyzed by EDXA(Energy Dispersive X-ray Analysis) also and showed a gel composed of alkali(Na+, K+), silica and calcium.

  • PDF

The Petrographic Properties and Alkali-Aggregate Reaction of Crushed Stones (쇄석 골재의 광물학적 특성 및 알칼리-골재 반응성)

  • 전쌍순;박현재;이효민;황진연;진치섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.249-254
    • /
    • 2002
  • In Korea, due to the shortcomings of natural aggregates and increasing needs of crushed stones, it is necessary to examine the alkali-aggregate reaction of the crushed stones. The purpose of this study is to analyze petrographic properties and alkali-aggregate reaction of crushed stones This study was peformed to investigate the alkali-aggregate reaction of crushed stones using chemical analysis, physical properties, XRD, XRF and mortar-bar method.

  • PDF

Application of Fly Ash Concrete in the Pavement (시험시공을 통한 플라이애쉬 콘크리트 포장 적용 특성)

  • Hong, Seung-Ho;Lee, Byung-Duk;Han, Seung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.701-704
    • /
    • 2008
  • The case of failure of Alkali-silica reaction (ASR) on the cement concrete pavement was reported in Korea. In the United States America, the fly ash has less than 10 percent Cao reported that prevent expansion by ASR. Most of all fly ash in Korea have less than 10 percent CaO, therefore it is similar ASTM F fly ash in the USA. Crushed aggregates of the test section had expansion behavior by potential ASR that the ASTM C 1260 test method tested expansion 0.17 percent during 14 days. The test section of concrete pavement used crushed aggregate was constructed that fly ash have 20 percent weight of cementitious materials to prevent expansion by ASR. This study was performed flexural strength test for elapsed days and durability by freeze-thaw test. It was shown that flexural strength was increased elapsed days and good performed freeze-thaw test. This study shown that fly ash concrete pavement was good performance in the test section.

  • PDF

Characteristics of Borosilicate Glass Incorporated Mortar for Improve Neutron Shielding Capability (중성자 차폐능 향상을 위한 붕규산유리 혼입 모르타르의 특성 분석)

  • Jang, Bo-Kil;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.155-156
    • /
    • 2017
  • Borosilicate glass was incorporated to improve the neutron shielding capability of concrete. Boron is a typical neutron shielding material, and it is contained in borosilicate glass. However, borosilicate glass causes alkali-silica reaction, which damages the concrete. Therefore, studied to reduce the expansion due to alkali-silica reaction and to improve the neuton shielding capability. The measurement of the expansion due to the alkali-silica reaction was based on ASTM C 1260. Experimental results show that the expansion due to alkali-silica reaction is reduced when borosilicate glass powder incorporated. In addition, the neutron shielding capability was significantly improved when the fine aggregate replaced with borosilicate glass.

  • PDF

An Experimental Study on the Alkali-Silica Reaction of Crushed Stones (Part4: The Application of the JIS Rapid Test Method to the Several Domestic Reactive Aggregates) (쇄석골재의 알칼리-실리카 반응에 관한 실험적 연구 (제4보: 국내산 반응성 골재에 JIS 신속법 적용가능성))

  • 차태환;조원기;조일호;노재호;이양수;정재동;윤재환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.447-450
    • /
    • 1994
  • The chemical method and mortar-bar method for identification of the susceptibility to Alkali-Aggregate Reaction (AAR) was established as KS method by referencing the ASTM methods. However, the chemical method requires skilled chemical engineers and aggregates are tested in very severe condition, and on the other hand, the mortar-bar method needs a long time of 3 or 6 months. Judging from this circumstance that the use of crushed stones are increased due to the shortage of natural aggregates, the development and standardization of a new rapid test method is considered essential. The purpose of this paper is to research for the possibility to apply the rapid method, instead of the chemical method and the mortar-bar method with using the several domestic crushed stones.

  • PDF