• Title/Summary/Keyword: 알칼리 활성 슬래그 콘크리트

Search Result 53, Processing Time 0.02 seconds

An Experimental Study on the Chloride Attack Resistibility of Alkali-Activated Ternary Blended Cement Concrete (알칼리 활성화 3성분계 혼합시멘트의 염해 저항성에 관한 실험적 연구)

  • Yang, Wan-Hee;Hwang, Ji-Soon;Jeon, Chan-Soo;Lee, Sea-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.321-329
    • /
    • 2016
  • The use of ternary blended cement consisting of Portland cement, granulated blast-furnace slag (GGBFS) and fly ash has been on the rise to improve marine concrete structure's resistance to chloride attack. Therefore, this study attempted to investigate changes in chloride attack resistibility of concrete through NT Build 492-based chloride migration experiments and test of concrete's ability to resist chloride ion penetration under ASTM C 1202(KS F 2271) when 1.5-2.0% of alkali-sulfate activator (modified alkali sulfate type) was added to the ternary blended cement mixtures (40% ordinary Portland cement + 40% GGBFS + 20% fly ash). Then, the results found the followings: Even though the slump for the plain concrete slightly declined depending on the use of the alkali-sulfate activator, compressive strength from day 2 to day 7 improved by 17-42%. In addition, the coefficient from non-steady-state migration experiments for the plain concrete measured at day 28 decreased by 36-56% depending on the use of alkali-sulfate. Furthermore, total charge passed according to the test for electrical indication of concrete's ability to resist chloride ion penetration decreased by 33-62% at day 7 and by 31-48% at day 28. As confirmed in previous studies, reactivity in the GGBFS and fly ash improved because of alkali activation. As a result, concrete strength increased due to reduced total porosity.

Properties of Alkali-Activated Cement Mortar by Curing Method (양생 방법에 따른 알칼리활성 시멘트 모르타르의 특성)

  • Kim, Ji-Hoon;Lee, Jae-Kyu;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Globally, there are environmental problems due to greenhouse gas emissions. $CO_2$ emissions rate of the cement industry is very high, but the continued demand of cement is needed in the future. In this study, in order to reduce the environmental impact of $CO_2$ emissions from cement production. The experiments were carried out for the development of non-sintered cement (have not undergone firing burning) by granulated ground blast furnace slag. In order to compare the characteristics by curing, an experiment was conducted by changing the curing conditions such as atmospheric steam curing, observe the mechanical properties for the measurement of flexural compressive strength by mortar, observe the chemical properties such as acid resistance, $Cl^-$ penetrate resistance and analyzed the mechanism of hydration by XRD, SEM experiments. From the experimental results, as compared with portland cement usually confirm the mechanical and chemical properties excellent, it is expected be possible to apply to the undersea, underwater and underground structures that require superior durability. In addition, based on the excellent compressive strength by steam curing, it is expected to be possible to utilize as a cement replacement material in the secondary product of concrete. In the future, to solve the problem through continued research, it will be expected to reduce the effect of environmental load and to be excellent economics.

Evaluation of Flexural Performance of Eco-Friendly Inorganic Binding Material RC Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 무기결합재 철근콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Kim, Jin-Hwan;Jang, Kie-Chang
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.261-269
    • /
    • 2013
  • In this study, it was developed eco-friendly inorganic binding material concrete using ground granulated blast furnace slag and alkali activator (water glass, sodium hydroxides). Eight reinforced concrete beam using inoganic binding material concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, type of admixture and admixture. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The eco-friendly concrete using inorganic binding material encouraged alkali activation reaction was rapidly hardening speed and showed possibility as a high strength concrete. Also, the RC beams using new materials showed similar behavior and failed similarly with RC beam used portland cement. It is thought that eco-friendly inorganic binding material concrete can be used with construction material and product as a basic research to replace cement concrete. If there is application to structures in PC member as well as production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.

Long-Term Durability Estimation of Cementless Concrete Based on Alkali Activated Slag (알칼리 활성 슬래그 기반 무시멘트 콘크리트의 장기 내구성 평가)

  • Lee, Hyun-Jin;Lee, Seok-Jin;Bae, Su-Ho;Kwon, Soon-Oh;Lee, Kwang-Myong;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.149-156
    • /
    • 2016
  • It has been well known that concrete structures exposed to chloride and sulfate attack environments lead to significant deterioration in their durability due to chloride ion and sulfate ion attack. The purpose of this experimental research is to evaluate the long-term durability against chloride ion and sulfate attack of the alkali activated cementless concrete replacing the cement with ground granulated blast furnace slag. For this purpose, the cementless concrete specimens were made for water-binder ratios of 40%, 45%, and 50%, respectively and then this specimens were cured in the water of $20{\pm}3^{\circ}C$ and immersed in fresh water, 10% sodium sulfate solution for 28, 91, 182, and 365 days, respectively. To evaluate the long-term durability to chloride ion and sulfate attack for the cementless concrete specimens, the diffusion coefficient for chloride ion and compressive strength ratio, mass change ratio, and length change ratio were measured according to the NT BUILD 492 and JSTM C 7401, respectively. It was observed from the test results that the resistance against chloride ion and sulfate attack of the cemetntless concrete were comparatively largely increased than those of OPC concrete irrespective of water-binder ratio.

Application of Alkali-Activated Ternary Blended Cement in Manufacture of Ready-Mixed Concrete (알칼리 활성화 3성분계 혼합시멘트의 레미콘 적용 시험)

  • Yang, Wan-Hee;Hwang, Ji-Soon;Lee, Sea-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2017
  • Cement industry is typical carbon-emission industry. If the industrial by-products(granulated blast-furnace slag (GGBFS), fly ash, etc.) are used a large amount, it might be able to reduce cement consumption and mitigate carbon emissions. In this case, however, decrease of early strength is relatively large. Therefore, there is a limitation in increase of the amount of substitute. Considering these circumstances, it would be a good solution to reduce carbon emissions in cement industry to improve the performances of mixed cement through proper alkali-activation in Portland blended cement using GGBFS or fly ash. Therefore, this study prepared concrete in ready-mixed concrete manufacturing facilities with an addition of a binder which used 2.0% modified alkali sulfate activator after mixing Portland cement, GGBFS and fly ash in the ratio of 4:4:2 and assessed its basic properties. The results found the followings: The use of modified alkali-sulfate activator slightly reduced slump and shortened setting time. As a result, bleeding capacity decreased while early strength improved. In addition, there is no big difference in carbonation resistance. It appears that there should be continued experiments and analyses on the related long-term aged specimens.

Study on Mechanical Properties of Geopolymer Concrete using Industrial By-Products (산업부산물을 사용한 지오폴리머 콘크리트의 역학적 특성에 관한 연구)

  • Kim, Si-Hwan;Koh, Kyung-Taek;Lee, Jang-Hwa;Ryu, Gum-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.52-59
    • /
    • 2014
  • This study examines the compressive strength, elastic modulus and splitting tensile strength of geopolymer concrete in order to evaluate its mechanical characteristics according to the admixing of fly ash and blast furnace slag. Moreover, identical tests are also conducted considering the amount of powder, the mixing ratio of alkali activator and the mixing ratio of silica fume for further comparative analysis considering various variables. The comparison with the formulae specified in Korean and overseas codes reveal that a mixing ratio of 18% is adequate for the alkali activator and that a replacement ratio of 5% by silica fume is recommended for silica fume. The elastic modulus of the geopolymer concrete appears to increase slightly with the increase of the compressive strength per variable and age and to be smaller than the values predicted by the formulae specified in Korean and overseas codes. In addition, the examination of the stress-strain curves shows that the geopolymer concrete exhibits ductile behavior compared to the conventional OPC. In view of the splitting tensile strength, high strength is observed for a powder content of $400kg/m^3$ and a replacement ratio of 18% by silica fume. The resulting ratio of the compressive strength to the splitting tensile strength is seen to range between 8.7 and 10.2%.

The Influence of Al2O3 on the Properties of Alkali-Activated Slag Cement (알칼리 활성화 슬래그 시멘트의 특성에 미치는 Al2O3의 영향)

  • Kim, Tae-Wan;Kang, Choong-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.205-212
    • /
    • 2016
  • This research investigates the influence of ground granulated blast furnace slag (GGBFS) composition on the alkali-activated slag cement (AASC). Aluminum oxide ($Al_2O_3$) was added to GGBFS binder between 2% and 16% by weight. The alkaline activators KOH (potassium hydroxide) was used and the water to binder ratio of 0.50. The strength development results indicate that increasing the amount of $Al_2O_3$ enhanced hydration. The 2M KOH + 16% $Al_2O_3$ and 4M KOH + 16% $Al_2O_3$ specimens had the highest strength, with an average of 30.8 MPa and 45.2 MPa, after curing for 28days. The strength at 28days of 2M KOH + 16% $Al_2O_3$ was 46% higher than that of 2M KOH (without $Al_2O_3$). Also, the strength at 28days of 4M KOH + 16% $Al_2O_3$ was 44% higher than that of 4M KOH (without $Al_2O_3$). Increase the $Al_2O_3$ contents of the binder results in the strength development at all curing ages. The incorporation of AASC tended to increases the ultrasonic pulse velocity (UPV) due to the similar effects of strength, but increasing the amount of $Al_2O_3$ adversely decreases the water absorption and porosity. Higher addition of $Al_2O_3$ in the specimens increases the Al/Ca and Al/Si in the hydrated products. SEM and EDX analyses show that the formation of much denser microstructures with $Al_2O_3$ addition.

A Study on the Strength Property of Recycled Fine Aggregate (Wet Type) Mortar with Blast Furnace Slag (고로슬래그를 사용한 습식 순환 잔골재 모르타르의 강도 특성에 관한 연구)

  • Shim, Jong-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.153-160
    • /
    • 2010
  • This study aims to obtain technical data for improvement of utilization of Blast Furnace Slag(BFS), recycled aggregate in the future by complementing fundamental problems of BFS such as manifestation of initial strength and excessive alkali quantity as well as weakness of recycled fine aggregate through manufacturing of recycled fine aggregate mortar using BFS. The recycled aggregate includes the cement paste hardened as the surface and the type of the aggregate, which contains plenty of calcium hydroxide($Ca(OH)_2$) as well as the unhydrated cement. Accordingly, the objectives of this study are to inspect the manufacturing the recycled fine aggregate mortar used with blast furnace slag, to consider the effects of the recycled aggregate on the strength development of ground granulated blast furnace slag, and then to acquire the technical data to take into consideration the further usages of the recycled aggregate and blast furnace slag. In eluted ions from recycled aggregate, it showed that there were natrium($Na^+$) and kalium($K^+$), expected to be flown out of unhydrated cement, as well as calcium hydroxide($Ca(OH)_2$). Application of this water to mix cement mortar with ground granulated blast furnace slag was observed to expedite hydration as calcium hydroxide($Ca(OH)_2$) and unhydrated cement component were expressed to give stimuli effects on ground granulated blast furnace slag. The results of the experiment show that the recycled aggregate mixed with blast furnace slag has comparatively higher hydration activity in 7 day than the mortar not mixed with one in 3 day mortar does, causing the calcium hydroxide in the recycled fine aggregate to work on as a stimulus to the hydration of ground granulated blast furnace slag.

Experimental Study on Rheological Properties of Alkali Activated Slag Pastes with Water to Binder Ratio (물 결합재 비에 따른 알칼리 활성 슬래그 페이스트의 레올로지 특성에 관한 실험적 연구)

  • Kim, Byeong-Jo;Song, Jin-Kyu;Song, Keum-Il;Oh, Myeong-Hyeon;Lee, Bang-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.511-519
    • /
    • 2015
  • Methods such table flow, slump and outflow time have used to be as a main evaluation criteria regards to fluidity of concrete. Since those methods mentioned above have some inaccuracies which are up to its condition of test. Studies that evaluate fluidity applying the rheology has increased its portion in this field. Meanwhile, demands for AAS binder have been increased in accordance with its demand for this market, studies for rheology of AAS binder are little though. Therefore, this paper mainly deals a rheological peculiarity of AAS binder according to its condition of W/B ratio and alkali activators. The fluidity of AAS paste was evaluated with the index of table flow and outflow time. And shear stress following its shear rate was analyzed through rheological test. Rheological parameters were deduced through this rheological test of Bingham model and analyzed its interrelation with fluidity test. As the final outcome, it proposed the interrelation among table flow, yield stress, viscosity and outflow time. In basis of this study, we would like to suggest a reference for mixing AAS mortars and concretes.

Pozzolanicity of Calcined Sewage Sludge with Calcination and Fineness Conditions (소성조건 및 분말도에 따른 소성하수슬러지(CSS)의 포졸란 특성)

  • So, Hyoung-Seok;So, Seung-Young;Khulgadai, Janchivdorj;Kang, Jae-Hong;Lee, Min-Hi
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.65-73
    • /
    • 2015
  • This study discussed the pozzolanic properties of calcined sewage sludge (CSS) according to calcination and fineness conditions. The chemical and mineralogical analysis of CSS according to calcination temperature and time were carried out and compared with that of the existing pozzolanic materials such as fly-ash, blast furnance slag and meta-kaolin. Various mortars were made by mixing those CSS and $Ca(OH)_2$ (1:1 wt. %), and their compressive strength and hydrates according to experimental factors such as fineness of CSS and curing age were also investigated in detail. The results show clearly the potentiality of calcined sewage sludge (CSS) as an admixture materials in concrete, but the CSS should be controlled by calcination temperature and time, and fineness etc. In this experimental condition, the calcination temperature of $800^{\circ}C$, calcination time of 2 hours and fineness of $5,000cm^2/g$ were optimum conditions in consideration of the mechanical properties and economic efficiency of CSS. The compressive strength of CSS mortars was higher than that of fly-ash mortars and blast furnace slag mortars, especially at the early ages. Then, the utilization of CSS in construction fields was greatly expected.