• Title/Summary/Keyword: 알칼리 활성

Search Result 372, Processing Time 0.045 seconds

Properties of Alkali Activated Inorganic Binder using Replacement Materials Alkali Activator with Red Mud (알칼리 자극제 대체재로써 레드머드를 사용한 알칼리 활성 무기결합재의 특성)

  • Park, Sun-Gyu
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.139-140
    • /
    • 2014
  • 최근 건선산업에서 문제점으로 지적되고 있는 것은 제조과정 중 이산화탄소를 다량 방생시키는 시멘트의 사용이다. 이는 알칼리활성 무기결합재로 대체함으로써 시멘트보다 이산화탄소 배출량을 저감할 수 있지만 고가의 알칼리 자극제를 다량 사용하기 때문에 경제적 측면 및 사용성을 고려하지 않으면 사용할 수 없기 때문에 이에 대한 대체재에 관한 연구가 필요한 실정이다. 이에 본 연구에서는 고로슬래그를 기반으로 하는 알칼리 활성 무기결합재에 알칼리 자극제의 사용량을 저감하기 위해 레드머드를 사용하고, 레드머드에 적합한 알칼리 자극제의 종류와 사용방법에 대하여 연구하고자 하였다.

  • PDF

Effect of Alkaline Activator and Curing Condition on the Compressive Strength of Cementless Fly Ash Based Alkali-Activated Mortar (시멘트를 사용(使用)하지 않은 플라이애시 알칼리 활성(活性) 모르타르의 압축강도(壓縮强度)에 미치는 알칼리 활성제(活性劑) 및 양생조건(養生條件)의 영향(影響))

  • Kang, Hyun-Jin;Ryu, Gum-Sung;Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Kim, Sung-Wook;Lee, Jang-Hwa
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.39-50
    • /
    • 2009
  • Portland cement production is under critical review due to high amount of $CO_2$ gas released to the atmosphere. Attempts to increase the utilization of fly ash, a by-products from thermal power plant to partially replace the cement in concrete are gathering momentum. But most of fly ash is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. Instead, the source of material such as fly ash, that are rich in Silicon(Si) and Aluminium(Al), are activated by alkaline liquids to produce the binder. Hence concrete with no cement is effective in the reduction of $CO_2$ gas. In this study, we investigated the influence of the compressive strength of mortar on alkaline activator and curing condition in order to develop cementless fly ash based alkali-activated concrete. In view of the results, we found out that it was possible for us to make alkali-activated mortar with 70MPa at the age of 28days by using alkaline activator manufactured as 1:1 the mass ratio of 9M NaOH and sodium silicate and applying the atmospheric curing after high temperature at $60^{\circ}C$ for 48hours.

Characterization of Microemulsion of Crude Oil Using Alkali-Surfactant Solution (알칼리-계면활성제 용액을 이용한 인도네시아 A원유의 마이크로에멀전 특성)

  • Lee, Sang Heon;Kim, Sang Kyum;Bae, Wisup;Rhee, Young Woo
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.259-264
    • /
    • 2015
  • For the enhanced oil recovery, one of the most important factors is to determine the surfactant formulation in chemical flood. The objective of this study is to analyze the microemulsion formed between the alkali-surfactant (AS) solution and A crude oil for screening surfactants. The alkali-surfactant solution was manufactured by using the surfactant purchased from AK ChemTech. $C_{16}-PO_7-SO_4$ and sodium carbonate solution were used as surfactant and alkaline, respectively. Both TEGBE and IBA were used as a co-solvent. The AS solution and A crude oil can form a Type III middle phase microemulsion at the salinity from 0.0 wt%~3.6 wt%. Increasing the salinity causes the phase transition of microemulsion from the lower (Type I) to middle (Type III) to upper (Type II) phase. Interfacial tension (IFT) values calculated by Huh's equation were in good agreement with ultralow IFT. According to this characteristic, the surfactant purchased from a domestic company can be applied to the enhanced oil recovery.

알칼리-골재팽창을 최소화시키는 포틀랜드 제올라이트 시멘트

  • 한국양회공업협회
    • Cement
    • /
    • s.108
    • /
    • pp.57-60
    • /
    • 1987
  • 이 논문에서는 통상의 포졸란 대신에 제올라이트 물질 즉, 화산 응회암을 적절히 분쇄한 후 혼합해서 만든 시멘트의 특성 변화에 대해 논하였다. 이러한 치환이 알칼리-골재 팽창 반응을 최소화시키고 장기강도를 향상시키는 장점이 있다는 사실도 밝혀냈다. 특히 제올라이트를 미리 열처리해서 첨가했을 때 이러한 팽창감소 효과가 현저하다는 것도 발견하였다. 강도증진 효과는 포졸란 유리상의 활성도에 비해 제올라이트 광물의 활성도가 높기 때문으로 해석되며 팽창의 감소는 비정질 수화 규산염이 먼저 알칼리와 반응을 하는 성질이 있기 때문으로 판단된다.

  • PDF

Development of Fly Ash/slag Cement Using Alkali-activated Reaction(2) - Reaction products and microstructure - (알칼리 활성반응을 이용한 플라이 애쉬/슬래그 시멘트 개발(2) - 반응생성물과 미세구조 -)

  • Park, Sang-Sook;Kang, Hwa-Young;Han, Kwan-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.810-819
    • /
    • 2007
  • Investigation of alkali activation of fly ash and blast furnace slag was carried out using waterglass and sodium hydroxide. XRD, FTIR, $^{29}Si$ and $^{27}Al$ NMR, TGA and SEM were used to observed the reaction products and microstructure of the fly ash/slag cement (FSC) pastes. The reaction products were amorphous or low-ordered calcium silicate hydrate and aluminosilicate gel produced from alkali activation of blast furnace slag and fly ash, respectively. On the basis of this investigation, waterglass solution with a modulus(Ms) of 1.0 and 1.2 is recommended for alkali activation of fly ash and blast furnace slag. Morphology of FSC pastes alkali-activated with Ms of 1.0 and 1.2 shows a more solid and continuous matrix due to restructuring of gel-like reaction products from alkali-activated fly ash and blast furnace slag together with another hydrolysis product(i.e., silica gel) from water glass.

Evaluation of the Flowability and Compressive Strength of Alkali-Activated Blast Slag Mortar (고로슬래그 알칼리 활성 모르타르의 유동성 및 압축강도 평가)

  • Ryu, Gum-Sung;Kang, Hyun-Jin;Koh, Kyung-Taek;Lee, Jang-Hwa;Kang, Su-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.613-616
    • /
    • 2008
  • Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. Instead, the source of material such as fly ash and blast slag, that are rich in Silicon(Si) and Aluminium(Al), are activated by alkaline liquids to produce the binder. Hence concrete with no cement is effect reduction of CO$_2$ gas. In this study, we investigated the influence of the workability and compressive strength of mortar on water reducing agent, alkaline activator and curing method in oder to develop cementless blast slag based alkali-activated mortar. In view of the results, we found out that the flowability of mortar was lowered as increasing to mole concentration of NaOH, but not large the loss of flowability to 9M NaOH, most of water reducing agent was not effect. The compressive strength was improved as increasing to mole concentration of NaOH, was the most effect in 9M NaOH. The curing temperature and curing conditions on compressive strength of blast slag based alkali-activated mortar didn't influence.

  • PDF

The Effect on the Kind of Alkali-Activator of Cement ZERO Mortar (알칼리 활성화제 종류가 시멘트 ZERO 모르타르에 미치는 영향)

  • Ryu, Gum-Sung;Kang, Hyun-Jin;Ko, Kyung-Taek;Kang, Su-Tae;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.397-398
    • /
    • 2009
  • Recently, the research about alkaline activity concrete is being progressed actively. In this paper, the effect of many kinds of alkaline activation to fly ash based cement zero mortar is examined.

  • PDF

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction II. Effect of Alkali Metal Salt on the Activity of CoMo Catalyst (황에 저항성을 가지는 수성가스 전환반응 촉매의 연구 II. CoMo 촉매의 활성에 미치는 알칼리 금속염의 영향)

  • Kim, Joon Hee;Lee, Ho In
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.6
    • /
    • pp.696-702
    • /
    • 1998
  • The effect of alkali metal salt on the activity of Co-Mo catalyst which has high resistance to sulfur poisoning for water gas shift reaction(WGSR) was studied. Two groups of catalysts were prepared to investigate the effects of anion and cation in alkali metal salts. For K-doped catalysts made with various potassium salts having different anion, the catalytic activity was explained to depend mainly on the BET surface area. Among the catalysts prepared by various nitrates of alkali metal as precursor, the Li-doped catalyst showed the best activity, and the others did not make significant differences giving relatively low activities. And the change of BET surface area by varying the loading of alkali metal showed a similar trend to that of activity. In this case, the activity was dependent on both BET surface area and the ratio of $Mo^{6+}$ with a tetrahedral coordination symmetry to $Mo^{6+}$ with an octahedral one, $Mo^6+[T]/Mo^{6+}[O]$ value.

  • PDF

The Strength Properties of Alkali-Activated Slag Mortars by Combined Caustic Alkali with Sodium Carbonate as Activator (가성알칼리와 탄산나트륨을 혼합한 활성화제를 사용한 알칼리 활성화 고로슬래그 모르타르의 강도 특성)

  • Kim, Tae-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.745-752
    • /
    • 2012
  • This paper studies the effect of the compressive strength for combined alkali-activated slag mortars. The effect of activators such as alkali type and dosage factor on the strength was investigated. The alkalis combinations made using five caustic alkalis (sodium hydroxide (NaOH, A series), calcium hydroxide ($Ca(OH)_2$, B series), magnesium hydroxide ($Mg(OH)_2$, C series), aluminum hydroxide ($Al(OH)_3$, D series), and potassium hydroxide (KOH, E series)) with sodium carbonate ($Na_2CO_3$) were evaluated. The mixtures were combined in different dosage at 1M, 2M, and 3M. The study results showed that the compressive strength of combined alkali-activated slag mortars tended to increase with increasing sodium carbonate. The strength of combined alkali-activated slag mortars was better than that of control cases (without sodium carbonate). The result from scanning electron microscopy (SEM) analysis confirmed that there were reaction products of calcium silicate hydrate (C-S-H) and alumina-silicate gels from combined alkali-activated slag specimens.

A Study on Cementation of Sand Using Blast Furnace Slag and Extreme Microorganism (고로슬래그와 극한미생물을 이용한 모래의 고결화 연구)

  • Park, Sung-Sik;Choi, Sun-Gyu;Nam, In-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.93-101
    • /
    • 2014
  • In this study, a blast furnace slag having latent hydraulic property with an alkaline activator for resource recycling was used to solidify sand without using cement. Existing chemical alkaline activators such as $Ca(OH)_2$ and NaOH were used for cementing soils. An alkaliphilic microorganism, which is active at higher than pH 10, is tested for a new alkaline activator. The alkaliphilic microorganism was added into sand with a blast furnace slag and a chemical alkaline activator. This is called the microorganism alkaline activator. Four different ratios of blast furnace slag (4, 8, 12, 16%) and two different chemical alkaline activators ($Ca(OH)_2$ and NaOH) were used for preparing cemented specimens with or without the alkaliphilic microorganism. The specimens were air-cured for 7 days and then tested for the experiment of unconfined compressive strength (UCS). Experimental results showed that as a blast furnace slag increased, the water content and dry density increased. The UCS of a specimen increased from 178 kPa to 2,435 kPa. The UCS of a specimen mixed with $Ca(OH)_2$ was 5-54% greater than that with NaOH. When the microorganism was added into the specimen, the UCS of a specimen with $Ca(OH)_2$ decreased by 11-60% but one with NaOH increased by 19-121%. The C-S-H hydrates were found in the cemented specimens, and their amounts increased as the amount of blast furnace slag increased through SEM analysis.