• 제목/요약/키워드: 알칼리 연료전지

검색결과 39건 처리시간 0.022초

용융탄산염 연료전지에서 알칼리 탄산염에 의한 Ni/MgO 촉매의 피독 (Poisoning of the Ni/MgO Catalyst by Alkali Carbonates in a DIR-MCFC)

  • 문형대;김준희;하흥용;임태훈;홍성안;이호인
    • 공업화학
    • /
    • 제10권5호
    • /
    • pp.754-760
    • /
    • 1999
  • 직접 내부개질형 MCFC용 촉매의 반응 전과 후의 특성분석을 ICP, BET, CHN, EDS, $H_2$ 화학흡착 분석을 통하여 수행하였다. 반응을 거치는 동안 탄산염 전해질의 구성 성분인 K와 Li가 촉매에 전달되고, 그 누적량은 단위전지 내의 위치에 따라 입구, 출구, 중간 순으로 감소하였다. 알칼리 전달량 증가에 따라 BET 표면적과 Ni 분산도가 감소하고 촉매 표면에 증착된 알칼리 탄산염 물질이 존재하는 것으로부터, 촉매 표면상에 존재하는 알칼리성분의 물리적 피복이 촉매 활성을 감소시키는 중요한 원인임을 확인하였다. SEM 분석 결과, 입구, 중간, 출구 순으로 알칼리 성분의 표면 피복율이 감소하였으나, 실제 메탄에 대한 수증기 개질반응의 촉매활성은 출구부분 촉매가 입구나 중간 부분 촉매보다 낮은 활성을 보임으로써, 알칼리 탄산염의 물리적 피복에 의한 활성감소 이외의 다른 화학적 피독 요인이 존재함을 예측하였고, 이를 FT-IR 분석을 통해 확인하였다.

  • PDF

음이온교환막용 헤테로고리형 4차 암모늄 작용기를 갖는 폴리(아릴렌 이써)의 제조 및 특성 분석 (Preparation and Characterization of Poly(Arylene Ether) Having Heterocyclic Quaternary Ammonium Functional Groups for Anion Exchange Membranes)

  • 이상혁;유동진
    • 한국수소및신에너지학회논문집
    • /
    • 제33권4호
    • /
    • pp.372-382
    • /
    • 2022
  • In this study, anion exchange membranes were prepared by synthesizing the main chain into a poly(arylene ether) (PAE) structure, and the structures capable of improving the physical and chemical stability of the membrane by introducing a heterocyclic quaternary ammonium functional groups were studied. The chemical structure and thermal properties of the prepared polymer were confirmed by 1H-NMR, FT-IR, TGA, and DSC, and surface analysis was performed through AFM measurement. Additionally, dimensional stability and chemical properties was studied by measuring water uptake and swelling ratio, IEC and ionic conductivity. At 90℃, the quaternized poly(arylene ether) (QPAE)/1-methylpiperidine (MP) membrane exhibited the highest ionic conductivity of 27.2 mS cm-1, while the QPAE/1-methylimidazole (MI) membrane and QPAE/1-methylmorpholine (MM) membrane exhibited values of 14.5 mS cm-1 and 11.5 mS cm-1, respectively. In addition, the prepared anion exchange membrane exhibited high chemical stability in alkaline solution.

Spacer-type 전도기가 도입된 가교형 poly(2,6-dimethyl-1,4-phenylene oxide) 음이온 교환막의 제조 및 특성평가 (Preparation and Characterization of Anion Exchange Membrane Based on Crosslinked Poly(2,6-dimethyl-1,4-phenylene oxide) with Spacer-type Conducting Group)

  • 임해량;김태현
    • 멤브레인
    • /
    • 제27권5호
    • /
    • pp.425-433
    • /
    • 2017
  • 화석연료의 무분별한 사용에 따라 이산화탄소 배출 등 환경오염의 문제가 대두되면서, 전 세계적으로 신 재생에너지 및 친환경 에너지에 많은 연구가 이루어지고 있다. 연료전지는 전기에너지를 발생시키며 부산물로써 물만을 생성하는 친환경 에너지 발전 장치이다. 특히, 음이온 교환막을 이용한 알칼리 연료전지(Anion Exchange Membrane Alkaline Fuel Cell, AEMAFC)는 수소이온 교환막을 이용한 연료전지(Proton Exchange Membrane Fuel Cell, PEMFC)에 비해 보다 높은 촉매의 활성으로 인해 저가의 금속 촉매의 사용이 가능하다는 장점이 있다. 이러한 AEMAFC에서 요구되는 AEM의 특성으로는 연료전지가 작동하는 높은 pH 조건에서 높은 이온전도도 뿐만 아니라 화학적 안정성이다. 본 연구에서는 화학적 안정성을 극대화 시키기 위하여 poly(2,6-dimethyl-1,4-phenylene oxide) 고분자에 spacer-type의 전도기를 도입함과 동시에 가교법을 이용하여 높은 이온전도도($80^{\circ}C$, $67.9mScm^{-1}$)와 기계적 성질(영률 : 0.53 GPa) 뿐만 아니라 높은 pH 조건에서 화학적 안정성($80^{\circ}C$, 1000 h, 6.8% loss of IEC)을 갖는 AEMAFC용 고분자 전해질 막으로써의 가능성을 제시하였다.

알칼리 연료전지용 라니니켈 수소극에서 카본블랙의 첨가 (The Addition of Carbon Black to Raney Nickel Hydrogen Electrodes for Alkaline Fuel Cells)

  • 조장호;이상곤;조원일;김영채;이성철;이주성;문세기
    • 공업화학
    • /
    • 제8권6호
    • /
    • pp.927-933
    • /
    • 1997
  • 알칼리형 연료전지용 라니니켈 수소극에서 카본블랙이 전극 성능 및 촉매층 구조에 미치는 영향을 전기화학적 방법과 질소 흡착법등을 이용하여 조사되었다. 본 연구에서 라니니켈 수소극 촉매층의 최적 카본블랙 함량은 2wt% 였다. 카본블랙의 첨가는 한계전류밀도를 증가시켰으며, 이는 기액접촉면적의 증가에 기인한 것으로 사료된다. 또한 한계전류밀도에서의 속도결정단계는 수소가 기액접촉면에서녹는 단계일 가능성이 높은 것으로 조사되었다.

  • PDF

과량의 니켈 첨가로 합성된 NiO와 Co3O4가 도핑된 La(CoNi)O3 페로브스 카이트의 알칼리용액에서 산소환원 및 발생반응 특성 (Characterization of NiO and Co3O4-Doped La(CoNi)O3 Perovskite Catalysts Synthesized from Excess Ni for Oxygen Reduction and Evolution Reaction in Alkaline Solution)

  • 버링;임형렬;이홍기;박경세;심중표
    • 한국수소및신에너지학회논문집
    • /
    • 제32권1호
    • /
    • pp.41-52
    • /
    • 2021
  • NiO and Co3O4-doped porous La(CoNi)O3 perovskite oxides were prepared from excess Ni addition by a hydrothermal method using porous silica template, and characterized as bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for Zn-air rechargeable batteries in alkaline solution. Excess Ni induced to form NiO and Co3O4 in La(CoNi)O3 particles. The NiO and Co3O4-doped porous La(CoNi)O3 showed high specific surface area, up to nine times of conventionally synthesized perovskite oxide, and abundant pore volume with similar structure. Extra added Ni was partially substituted for Co as B site of ABO3 perovskite structure and formed to NiO and Co3O4 which was highly dispersed in particles. Excess Ni in La(CoNi)O3 catalysts increased OER performance (259 mA/㎠ at 2.4 V) in alkaline solution, although the activities (211 mA/㎠ at 0.5 V) for ORR were not changed with the content of excess Ni. La(CoNi)O3 with excess Ni showed very stable cyclability and low capacity fading rate (0.38 & 0.07 ㎶/hour for ORR & OER) until 300 hours (~70 cycles) but more excess content of Ni in La(CoNi)O3 gave negative effect to cyclability.

음이온교환막 연료전지 응용을 위한 UV 중합법을 이용한 세공 충진 음이온교환막 개발 (Development of Pore Filled Anion Exchange Membrane Using UV Polymerization Method for Anion Exchange Membrane Fuel Cell Application)

  • 곽가진;김도형;남상용
    • 멤브레인
    • /
    • 제33권2호
    • /
    • pp.77-86
    • /
    • 2023
  • 본 연구에서는 낮은 막 저항과 높은 수산화 이온 전도성을 가지는 세공 충진 이온교환막 제조법으로 연구하였다. 알칼리 내구성을 향상하기 위해 폴리 테트라 플로오 에틸렌 소재인 다공성 지지체를 사용하였고 세공에는 단량체 2-(dimethylamino)ethyl methacrylate (DMAEMA), vinylbenzyl chloride (VBC)를 이용하여 copolymer를 제조했다. 가교제는 divinylbenzene (DVB)를 사용하였고 가교제 함량별로 이온교환막을 제조하여 DMAEMA-DVB와 VBC-DMAEMA-DVB copolymer에서 가교제 함량이 미치는 영향에 관해 연구하였다. 그 결과, PTFE 소재 지지체를 이용하여 화학적 안정성이 향상했고 저압 UV 램프를 사용하여 낮은 온도에서 빠른 광중합이 가능하여 생산성을 높일 수 있는 장점이 있다. 음이온교환 막 연료전지에 요구되는 이온교환막의 물리적 및 화학적 안정성을 확인하기 위해서 인장강도와 내알칼리성 테스트를 진행하였다. 그 결과, 가교도가 증가할수록 인장강도 대략 40 MPa가 증가하였고, 최종적으로 이온전도도와 내알칼리성 테스트를 통해 가교제 함량이 증가할수록 알칼리 안정성이 증가하는 것을 확인하였다.

알칼리형 연료전지의 수소극용 Co-Mo 및 Ni-Mo 금속간화합물 전극의 전기화학적 안정성 (Electrochemical Stability of Co-Mo and Ni-Mo Intermetallic Compound Electrodes for Hydrogen Electrode of Alkaline Fuel Cell)

  • 이창래;강성군
    • 전기화학회지
    • /
    • 제2권3호
    • /
    • pp.150-155
    • /
    • 1999
  • [ $H_2-O_2$ ] 알칼리형 연료전지용 수소극으로서 아크융해법으로 제조된 Brewer-Engel type의 Co-Mo$(35\;wt\%)$ 및 Ni-Mo$(35\;wt\%)$ 금속간화합물 전극의 전기화학적 안정성이 조사되었다. $N_2$가스로 용존산소를 제거한 $80^{\circ}C$ 6N KOH 전해질 내에서 금속간화합물 전극의 전기화학적 안정성에 미치는 전해질의 농도 및 온도의 영향이 조사되었다. 또한, AFC의 정상 작동조건하에서는 Co-Mo및 Ni-Mo전극의 전기화학적 안정성에 대한 분극전압(과전압)의 영향이 논의되었다. Co-Mo전극은 Ni-Mo전극에 비하여 낮은 전기화학적 안정성을 보였다. 수소가스 평형전위로부터 낮은 양분극 과전압 하에서 Co-Mo전극에서는 Co와 Mo의 용해가 동시에 일어났다. 그러나, Co는 Mo에 비하여 급격히 용해되었다 높은 양분극 과전압에서는 전극표면에 $Co(OH)_2$ 부동태 피막이 형성되었다. Ni-Mo전극의 경우에는 Mo의 용해반응이 치밀한 $Ni(OH)_2$, 부동태 피막형성에 의하여 억제되어 우수한 전기화학적 안정성을 보였다.

라니 니켈 촉매에 대한 알칼리형 연료전지용 수소극의 전극특성 (Hydrogen Electrode Performance with PTFE Bonded Raney Nickel Catalyst for Alkaline Fuel Cell)

  • 이홍기;이주성
    • 공업화학
    • /
    • 제3권3호
    • /
    • pp.527-534
    • /
    • 1992
  • Raney nickel 촉매를 이용하여 알칼리형 연료전지의 수소극을 제작하였다. $700^{\circ}C$에서 소결한 Raney nickel로 제작한 수소극의 경우 가장 좋은 전극성능을 갖는 $450mA/cm^2$의 전류밀도를 나타냈으며 이때의 평균촉매입자 크기는 $90{\AA}$이었다. CO-chemisorption 측정 및 분극곡선과 Tafel slope를 통하여 PTFE의 첨가량에 대한 전극의 전기화학적 성능을 고찰하였다. CO-chemisorption 측정 결과 5wt%의 PTFE가 첨가되었을 때 최고값을 갖는 것이 확인되었으나 전극에서의 전류밀도와 Tafel slope를 비교한 결과 10wt%의 PTFE를 첨가하는 경우가 가장 적당함을 알았다. Raney nickel제조시 nicke과 aluminum의 함량비는 60:40의 경우에 가장 좋은 전극 특성을 나타내었으며 담지량은 $0.25g/cm^2$의 경우가 적당하였다. 전극제조시 촉매층의 press압 및 촉매층과 기체확산층과의 접합시의 Press압에 대한 영향도 검토하였다. 또한 촉매의 표면 구조를 SEM으로 관찰하였으며 활성화시간 및 열처리 온도 등 여러가지 조건에 대한 전극의 영향도 고찰하였다.

  • PDF

고분자 분쇄 기술을 활용한 고체 알칼리연료전지용 이오노머 바인더 용액 개발 (Development of Ionomer Binder Solutions Using Polymer Grinding for Solid Alkaline Fuel Cells)

  • 신문식;김도형;강문성;박진수
    • 전기화학회지
    • /
    • 제19권3호
    • /
    • pp.107-113
    • /
    • 2016
  • 본 연구에서는 고체알칼리 연료전지용 이오노머 바인더 용액 제조를 위하여 poly(2,6-dimethyl-1,4-phenylene oxide)(PPO)를 동결 분쇄하고 4급 암모늄화 반응을 진행하여 음이온 전도성 이오노머(quaternized PPO, QPPO) 용액을 제조하였다. QPPO 이오노머 바인더 용액의 종류를 고분자의 분쇄 시간을 통하여 제조하였고, 이에 따른 분산도, 입자의 크기 및 전기화학적 성능 등을 분석하였다. 이를 통해 기존의 비 분쇄 고분자를 활용하여 제조한 이오노머 바인더 용액보다 분쇄 고분자를 활용한 이오노머 바인더 용액이 높은 고분자 분산도와 낮은 입자 크기를 확보하였다. 제조한 이오노머 바인더 용액(BPPO-G120s)의 최대 이온전도도는 $0.025S\;cm^{-1}$이었으며, 이온교환용량은 $1.26meq\;g^{-1}$을 보였다.