• Title/Summary/Keyword: 알루미늄 금속 폐기물

Search Result 11, Processing Time 0.02 seconds

Development on Glass Formulation for Aluminum Metal and Glass Fiber (유리섬유 및 알루미늄 금속 혼합물 유리조성 개발)

  • Cho, Hyun-Je;Kim, Cheon-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.247-254
    • /
    • 2012
  • Vitrification technology has been widely applied as one of effective processing methods for wastes generated in nuclear power plants. The advantage of vitrifying for low- and intermediate-level radioactive wastes has a large volume reduction and good durability for the final products. Recently, a filter using on HVAC(Heating Ventilating & Air Conditioning System) is composed with media (glass fiber) and separator (aluminum film) has been studied the proper treatment technology for meeting the waste disposal requirement. Present paper is a feasibility study for the filter vitrification that developing of the glass compositions for filter melting and melting test for physicochemical characteristic evaluation. The aluminum metal of film type is preparing with 0.5 cm size for proper mixing with glass frit, glass fiber is also preparing with 1 cm size within crucible. The glass compositions should be developed considering molten glass are related with wastes reduction. Glass compositions obtained from developing on glass formulation are mainly composed of $SiO_2$ and $B_2O_3$ for aluminum metal. A variety of factors obtained from the glass formulation and melting test are reviewed, which is feeding rate and glass characteristics of final products such as durability for implementing the wastes disposal requirement.

Test Run for the Production of Aluminum Hydroxide by Recycling of Waste Aluminum Dross (알루미늄 폐드로스로부터 수산화알루미늄 생산 시운전 결과)

  • Lee Hooin;Park Ryungkyu;Kim Joonsoo
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.47-53
    • /
    • 2004
  • Waste aluminum dross is a major waste in the aluminum scrap smelters, and some metallic aluminum remains in the waste dross. In the previous study, waste aluminum dross was leached with sodium hydroxide solution to extract the remained aluminum into the solution, and aluminum hydroxide precipitate was recovered from the leached solution. A pilot plant was constructed and tested to demonstrate the developed technology. One thousand tons of waste aluminum dross could be processed, and about five hundred tons of aluminum hydroxide could be produced in the pilot plant. From the test run of the pilot plant, it was confirmed that the developed technology could be employed as a commercial scale and the produced aluminum hydroxide could be used for water treatment agent.

Test Run of Pilot Plant for Recycling of the Leached Residue in the Processing of Waste Aluminum Dross (알루미늄 폐드로스 침출잔사 처리 파일롯트 플랜트 시운전 결과)

  • 박형규;이후인
    • Resources Recycling
    • /
    • v.13 no.3
    • /
    • pp.50-57
    • /
    • 2004
  • Waste aluminum dross is a major waste in the aluminum scrap smelters and its components are mostly alumina and remained metallic aluminum. In the process to extract the remained aluminum from the waste dross by leaching with sodium hydroxide solution, residue is generated and its main component is alumina. This residue could be recycled into ceramic materials such as alumina castable refractories by going through a series of treatments such as washing, drying and roasting. In this study, a pilot plant was constructed and tested to demonstrate the developed technology. One thousand tons of waste aluminum dross could be processed, and about seven hundred tons of ceramic materials produced in the demonstration line. From the test run of the pilot plant, although it was confirmed that the developed technology could be applied to commercialization, several technical improvements were found to be necessary for reducing impurities such as Na, Fe and for reforming drying equipment.

Characteristics of the Decontamination by the Melting of Aluminum Waste (용융에 의한 알루미늄 폐기물의 제염 특성)

  • Song Pyung-Seob;Choi Wang-Kyu;Min Byung-Youn;Kim Hak-I;Jung Chong-Hun;Oh Won-Zin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.2
    • /
    • pp.95-104
    • /
    • 2005
  • Effects of the aluminum melting temperature, melting time and a kind of flux agents on the distribution of surrogate nuclide were investigated in the electric furnace at the aluminum melting including surrogate radionuclides(Co, Cs, Sr) in order to establish the fundamental research of the melting technology for the metallic wastes from the decommissioning of the TRIGA research reactor. It was verified that the fluidity of aluminum melt was increased by adding flux agent but it was slightly varied according to the sort of flux agents. The results of the XRD analysis showed that the surrogate nuclides move into the slag phase and then they were combined with aluminum oxide to form more stable compound. The weight of the slag generated from aluminum melting test increased with increasing melting temperature and melting time and the increase rate of the slag depended on the kind of flux agents added in the aluminum waste. The concentration of the cobalt in the ingot phase decreased with increasing reaction temperature but it increased in the slag phase up to 90$\%$according to the experimental conditions. The volatile nuclides such as Cs and Sr considerably transferred from the ingot phase to the slag and dust phase.

  • PDF

Test Run of the Pilot Plant for Recycling of the Waste Aluminum Dross (알루미늄 페드로스 재활용 파일롯트플랜트 시운전 결과)

  • Park, Hyung-Kyu;Lee, Hoo-In;Choi, Young-Yoon
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.41-46
    • /
    • 2005
  • Waste aluminum dross is a major waste in the aluminum scrap smelters and its major components are alumina and metallic aluminum. In this study, waste aluminum dross was leached with sodium hydroxide solution to extract the remained aluminum into the solution, and aluminum hydroxide was recovered from the leached solution. The dross residue generated at the leaching step was recycled into alumina base ceramic materials through a series of treatments such as washing, drying and roasting. Also, a pilot plant was constructed and tested to demonstrate the developed technology. Four tons of waste aluminum dross could be processed per day. From the test run of the pilot plant, it was confirmed that the developed technology could be applied to commercialization.

Effect of AlF3 on Zr Electrorefining Process in Chloride-Fluoride Mixed Salts for the Treatment of Cladding Hull Wastes (폐 피복관 처리를 위한 염소계-불소계 혼합용융염 내 지르코늄 전해정련공정에서 삼불화알루미늄의 효과 연구)

  • Lee, Chang Hwa;Kang, Deok Yoon;Lee, Sung-Jai;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • Zr electrorefining is demonstrated herein using Zirlo tubes in a chloride-fluoride mixed molten salt in the presence of $AlF_3$. Cyclic voltammetry reveals a monotonic shift in the onset of metal reduction kinetics towards positive potential and an increase in intensity of the additional peaks associated with Zr-Al alloy formation with increasing $AlF_3$ concentration. Unlike the galvanostatic deposition mode, a radial plate-type Zr growth is evident at the top surface of the salt during Zr electrorefining at a constant potential of -1.2 V. The diameter of the plate-type Zr deposit gradually increases with increasing $AlF_3$ concentration. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX) and X-ray photoelectron spectroscopy (XPS) analyses for the plate-type Zr deposit show that trace amount of Al is incorporated as Zr-Al alloys with different chemical compositions between the top and bottom surface of the deposit. Addition of $AlF_3$ is effective in lowering the residual salt content in the deposit and in improving the current efficiency for Zr recovery.

A Study on the Electrolytic Process for Palladium Separation from Recovered Crude Metal of Electronic Waste (전자폐기물에서 회수된 조금속으로부터 팔라듐 분리를 위한 전해공정에 관한 연구)

  • Park, Sung Cheol;Han, Chul Woong;Kim, Yong Hwan;Jung, Yeon Jae;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.76-82
    • /
    • 2021
  • The separation of palladium from crude metal, which is obtained from electronic waste using pyrometallurgy was achieved through electrolysis. This was done to recover high-purity copper. The oxidation potentials of these metals are a fundamental part of the analysis of electrolytic separation of palladium and impurity metals. To achieve this, copper, iron, and nickel were dissolved in the electrolyte, and palladium and aluminum were found to be recoverable from anode slime. During the electrolysis for palladium separation, palladium was present in the anode slime and was obtained with a recovery of 97.46 % indicating almost no loss. 4N-grade copper was recovered from the electrodeposition layer at the cathode.

The Current Status of Recycling Process and Problems of Recycling according to the Packaging Waste of Korea (국내 포장 폐기물에 따른 재질별 재활용 공정 현황 및 재활용 문제점)

  • Ko, Euisuk;Shim, Woncheol;Lee, Hakrae;Kang, Wookgeon;Shin, Jihyeon;Kwon, Ohcheol;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.2
    • /
    • pp.65-71
    • /
    • 2018
  • Paper packs, glass bottles, metal cans, and plastic materials are classified according to packaging material recycling groups that are Extended Producer Responsibility (EPR). In the case of waste paper pack, the compressed cartons are dissociated to separate polyethylene films and other foreign substance, and then these are washed, pulverized and dried to produce toilet paper. Glass bottle for recycling is provided to the bottle manufacturers after the process of collecting the waste glass bottle, removing the foreign substance, sorting by color, crushing, raw materializing process. Waste glass recycling technology of Korea is largely manual, except for removal of metal components and low specific gravity materials. Metal can is classified into iron and aluminum cans through an automatic sorting machine, compressed, and reproduced as iron and aluminum through a blast furnace. In the case of composite plastic material, the selected compressed product is crushed and then recycled through melt molding and refined products are produced through solid fuel manufacturing steps through emulsification and compression molding through pyrolysis. In the recycling process of paper packs, glass bottles, metal cans, and plastic materials, the influx of recycled materials and other substances interferes with the recycling process and increases the recycling cost and time. Therefore, the government needs to improve the legal system which is necessary to use materials and structure that are easy to recycle from the design stage of products or packaging materials.

응집제를 이용한 금속폐광산 침출수와 주변오염지하수의 정화효율실험

  • 김인수;도원홍;이민희;김명진;조종수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.346-349
    • /
    • 2004
  • 국내에 자연 방치된 폐광산에 대한 문제가 대두되면서 폐광산 주변지역에 대한 산성광산폐수와 중금속 광산폐기물의 오염실태조사가 활발히 진행되고 있다. 본 연구는 폐광산의 유출수와 광산폐기물에 주변 오염지하수 내의 중금속 As, Cd, Pb, Fe, Mn, Zn, Cu에 대하여 무기 응집제의 첨가와 pH의 조절에 의한 제거효율을 .실내 배치실험을 통하여 규명하였다. 본 실험을 통하여 황산알루미늄(Al$_2$(SO$_4$)$_3$ㆍ13~14$H_2O$), 염화 제2철(FeCl$_3$ㆍ6$H_2O$), 황산 제2철(Fe$_2$(SO$_4$)$_3$ㆍ n$H_2O$)을 이용하여 오염수내 중금속을 90%이상 제거할 수 있었으며, 폐광산 침출수나 오염 지하수의 중금속 제거에 0.1 wt%의 응집제 첨가만으로 응집제를 이용한 화학적 처리 방법이 효과적으로 사용될 수 있을 것으로 판단되었다.

  • PDF

Recycling of Copper & Nickel in ASR to satisfy the EU ELV Directive (유럽연합 환경기준 충족을 위한 자동차폐기물 내의 구리와 니켈 재활용에 대한 연구)

  • Lee, Hyun-Chang;Park, Woo-Cheul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1729-1734
    • /
    • 2009
  • About 40 million automotive vehicles all over the world and 0.55 million in Korea were retired from use annually. Every nation is desperate to decrease environmental pollution by ELVs(End of Life Vehicles) and try to tighten the regulations. Europe passed laws requiring OEMs to increase vehicles' recovery and reuse rate to 95% by 2015 from current 84%. The ferrous parts, 75% of total automobile weight, are almost recycled whereas the remaining 25% of the non-metal -predominantly plastics as well as form, glass and rubber- and the non-ferrous materials -copper, nickel and aluminium- end up in landfills. The recycling status of non-ferrous materials represented by copper and nickel is reviewed and how much the recycling rate will be improved is calculated.