• Title/Summary/Keyword: 알고리즘 향상

Search Result 6,866, Processing Time 0.038 seconds

An Accurate Cryptocurrency Price Forecasting using Reverse Walk-Forward Validation (역순 워크 포워드 검증을 이용한 암호화폐 가격 예측)

  • Ahn, Hyun;Jang, Baekcheol
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.45-55
    • /
    • 2022
  • The size of the cryptocurrency market is growing. For example, market capitalization of bitcoin exceeded 500 trillion won. Accordingly, many studies have been conducted to predict the price of cryptocurrency, and most of them have similar methodology of predicting stock prices. However, unlike stock price predictions, machine learning become best model in cryptocurrency price predictions, conceptually cryptocurrency has no passive income from ownership, and statistically, cryptocurrency has at least three times higher liquidity than stocks. Thats why we argue that a methodology different from stock price prediction should be applied to cryptocurrency price prediction studies. We propose Reverse Walk-forward Validation (RWFV), which modifies Walk-forward Validation (WFV). Unlike WFV, RWFV measures accuracy for Validation by pinning the Validation dataset directly in front of the Test dataset in time series, and gradually increasing the size of the Training dataset in front of it in time series. Train data were cut according to the size of the Train dataset with the highest accuracy among all measured Validation accuracy, and then combined with Validation data to measure the accuracy of the Test data. Logistic regression analysis and Support Vector Machine (SVM) were used as the analysis model, and various algorithms and parameters such as L1, L2, rbf, and poly were applied for the reliability of our proposed RWFV. As a result, it was confirmed that all analysis models showed improved accuracy compared to existing studies, and on average, the accuracy increased by 1.23%p. This is a significant improvement in accuracy, given that most of the accuracy of cryptocurrency price prediction remains between 50% and 60% through previous studies.

Development of a modified model for predicting cabbage yield based on soil properties using GIS (GIS를 이용한 토양정보 기반의 배추 생산량 예측 수정모델 개발)

  • Choi, Yeon Oh;Lee, Jaehyeon;Sim, Jae Hoo;Lee, Seung Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.449-456
    • /
    • 2022
  • This study proposes a deep learning algorithm to predict crop yield using GIS (Geographic Information System) to extract soil properties from Soilgrids and soil suitability class maps. The proposed model modified the structure of a published CNN-RNN (Convolutional Neural Network-Recurrent Neural Network) based crop yield prediction model suitable for the domestic crop environment. The existing model has two characteristics. The first is that it replaces the original yield with the average yield of the year, and the second is that it trains the data of the predicted year. The new model uses the original field value to ensure accuracy, and the network structure has been improved so that it can train only with data prior to the year to be predicted. The proposed model predicted the yield per unit area of autumn cabbage for kimchi by region based on weather, soil, soil suitability classes, and yield data from 1980 to 2020. As a result of computing and predicting data for each of the four years from 2018 to 2021, the error amount for the test data set was about 10%, enabling accurate yield prediction, especially in regions with a large proportion of total yield. In addition, both the proposed model and the existing model show that the error gradually decreases as the number of years of training data increases, resulting in improved general-purpose performance as the number of training data increases.

A study on fault diagnosis of marine engine using a neural network with dimension-reduced vibration signals (차원 축소 진동 신호를 이용한 신경망 기반 선박 엔진 고장진단에 관한 연구)

  • Sim, Kichan;Lee, Kangsu;Byun, Sung-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.492-499
    • /
    • 2022
  • This study experimentally investigates the effect of dimensionality reduction of vibration signal on fault diagnosis of a marine engine. By using the principal component analysis, a vibration signal having the dimension of 513 is converted into a low-dimensional signal having the dimension of 1 to 15, and the variation in fault diagnosis accuracy according to the dimensionality change is observed. The vibration signal measured from a full-scale marine generator diesel engine is used, and the contribution of the dimension-reduced signal is quantitatively evaluated using two kinds of variable importance analysis algorithms which are the integrated gradients and the feature permutation methods. As a result of experimental data analysis, the accuracy of the fault diagnosis is shown to improve as the number of dimensions used increases, and when the dimension approaches 10, near-perfect fault classification accuracy is achieved. This shows that the dimension of the vibration signal can be considerably reduced without degrading fault diagnosis accuracy. In the variable importance analysis, the dimension-reduced principal components show higher contribution than the conventional statistical features, which supports the effectiveness of the dimension-reduced signals on fault diagnosis.

Predicting Functional Outcomes of Patients With Stroke Using Machine Learning: A Systematic Review (머신러닝을 활용한 뇌졸중 환자의 기능적 결과 예측: 체계적 고찰)

  • Bae, Suyeong;Lee, Mi Jung;Nam, Sanghun;Hong, Ickpyo
    • Therapeutic Science for Rehabilitation
    • /
    • v.11 no.4
    • /
    • pp.23-39
    • /
    • 2022
  • Objective : To summarize clinical and demographic variables and machine learning uses for predicting functional outcomes of patients with stroke. Methods : We searched PubMed, CINAHL and Web of Science to identify published articles from 2010 to 2021. The search terms were "machine learning OR data mining AND stroke AND function OR prediction OR/AND rehabilitation". Articles exclusively using brain imaging techniques, deep learning method and articles without available full text were excluded in this study. Results : Nine articles were selected for this study. Support vector machines (19.05%) and random forests (19.05%) were two most frequently used machine learning models. Five articles (55.56%) demonstrated that the impact of patient initial and/or discharge assessment scores such as modified ranking scale (mRS) or functional independence measure (FIM) on stroke patients' functional outcomes was higher than their clinical characteristics. Conclusions : This study showed that patient initial and/or discharge assessment scores such as mRS or FIM could influence their functional outcomes more than their clinical characteristics. Evaluating and reviewing initial and or discharge functional outcomes of patients with stroke might be required to develop the optimal therapeutic interventions to enhance functional outcomes of patients with stroke.

Classification of Diabetic Retinopathy using Mask R-CNN and Random Forest Method

  • Jung, Younghoon;Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.29-40
    • /
    • 2022
  • In this paper, we studied a system that detects and analyzes the pathological features of diabetic retinopathy using Mask R-CNN and a Random Forest classifier. Those are one of the deep learning techniques and automatically diagnoses diabetic retinopathy. Diabetic retinopathy can be diagnosed through fundus images taken with special equipment. Brightness, color tone, and contrast may vary depending on the device. Research and development of an automatic diagnosis system using artificial intelligence to help ophthalmologists make medical judgments possible. This system detects pathological features such as microvascular perfusion and retinal hemorrhage using the Mask R-CNN technique. It also diagnoses normal and abnormal conditions of the eye by using a Random Forest classifier after pre-processing. In order to improve the detection performance of the Mask R-CNN algorithm, image augmentation was performed and learning procedure was conducted. Dice similarity coefficients and mean accuracy were used as evaluation indicators to measure detection accuracy. The Faster R-CNN method was used as a control group, and the detection performance of the Mask R-CNN method through this study showed an average of 90% accuracy through Dice coefficients. In the case of mean accuracy it showed 91% accuracy. When diabetic retinopathy was diagnosed by learning a Random Forest classifier based on the detected pathological symptoms, the accuracy was 99%.

Strawberry Pests and Diseases Detection Technique Optimized for Symptoms Using Deep Learning Algorithm (딥러닝을 이용한 병징에 최적화된 딸기 병충해 검출 기법)

  • Choi, Young-Woo;Kim, Na-eun;Paudel, Bhola;Kim, Hyeon-tae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.255-260
    • /
    • 2022
  • This study aimed to develop a service model that uses a deep learning algorithm for detecting diseases and pests in strawberries through image data. In addition, the pest detection performance of deep learning models was further improved by proposing segmented image data sets specialized in disease and pest symptoms. The CNN-based YOLO deep learning model was selected to enhance the existing R-CNN-based model's slow learning speed and inference speed. A general image data set and a proposed segmented image dataset was prepared to train the pest and disease detection model. When the deep learning model was trained with the general training data set, the pest detection rate was 81.35%, and the pest detection reliability was 73.35%. On the other hand, when the deep learning model was trained with the segmented image dataset, the pest detection rate increased to 91.93%, and detection reliability was increased to 83.41%. This study concludes with the possibility of improving the performance of the deep learning model by using a segmented image dataset instead of a general image dataset.

Trends in the Use of Artificial Intelligence in Medical Image Analysis (의료영상 분석에서 인공지능 이용 동향)

  • Lee, Gil-Jae;Lee, Tae-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.453-462
    • /
    • 2022
  • In this paper, the artificial intelligence (AI) technology used in the medical image analysis field was analyzed through a literature review. Literature searches were conducted on PubMed, ResearchGate, Google and Cochrane Review using the key word. Through literature search, 114 abstracts were searched, and 98 abstracts were reviewed, excluding 16 duplicates. In the reviewed literature, AI is applied in classification, localization, disease detection, disease segmentation, and fit degree of registration images. In machine learning (ML), prior feature extraction and inputting the extracted feature values into the neural network have disappeared. Instead, it appears that the neural network is changing to a deep learning (DL) method with multiple hidden layers. The reason is thought to be that feature extraction is processed in the DL process due to the increase in the amount of memory of the computer, the improvement of the calculation speed, and the construction of big data. In order to apply the analysis of medical images using AI to medical care, the role of physicians is important. Physicians must be able to interpret and analyze the predictions of AI algorithms. Additional medical education and professional development for existing physicians is needed to understand AI. Also, it seems that a revised curriculum for learners in medical school is needed.

Data Augmentation using a Kernel Density Estimation for Motion Recognition Applications (움직임 인식응용을 위한 커널 밀도 추정 기반 학습용 데이터 증폭 기법)

  • Jung, Woosoon;Lee, Hyung Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.4
    • /
    • pp.19-27
    • /
    • 2022
  • In general, the performance of ML(Machine Learning) application is determined by various factors such as the type of ML model, the size of model (number of parameters), hyperparameters setting during the training, and training data. In particular, the recognition accuracy of ML may be deteriorated or experienced overfitting problem if the amount of dada used for training is insufficient. Existing studies focusing on image recognition have widely used open datasets for training and evaluating the proposed ML models. However, for specific applications where the sensor used, the target of recognition, and the recognition situation are different, it is necessary to build the dataset manually. In this case, the performance of ML largely depends on the quantity and quality of the data. In this paper, training data used for motion recognition application is augmented using the kernel density estimation algorithm which is a type of non-parametric estimation method. We then compare and analyze the recognition accuracy of a ML application by varying the number of original data, kernel types and augmentation rate used for data augmentation. Finally experimental results show that the recognition accuracy is improved by up to 14.31% when using the narrow bandwidth Tophat kernel.

A Study on Application of Improved Tunnel Water-Sealing Grouting Construction Process and the Inverse Analysis Material Selection Method Using the Injection Processing Results (개선된 터널 차수그라우팅 시공 프로세스 적용 및 그 주입시공결과를 이용한 역해석 재료선정방법 연구)

  • Kim, Jin Chun;Yoo, Byung Sun;Kang, Hee Jin;Choi, Gi Sung;Kim, Seok Hyun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.101-113
    • /
    • 2022
  • This study is planned with the aim of developing a systematic construction process based on the scientific and engineering theory of the water-sealing grouting construction applied to the tunnel excavation process during the construction of the downtown underground traffic network, so that the construction quality of the relatively backward domestic tunnel water-sealing grouting construction is improved and continuously maintained no matter who constructs it. The main contents of the improved tunnel water-sealing grouting can be largely examined in the classification of tunnel water-sealing grouting application and the definition of grouting materials, the correlation analysis of groundwater pressure conditions with groundwater inflow, the study of the characteristic factors of bedrock, and the element technologies and injection management techniques required for grouting construction. Looking at the trends in global research, research in the field of theoretical-based science and engineering grouting is actively progressing in Nordic countries (Sweden, Finland, Norway, etc.), Japan, Germany, and the United States. Therefore, in this study, the algorithm is established through theoretical analysis of the elements of tunnel water-sealing grouting construction techniques to provide an integrated solution including a construction process that can effectively construct tunnel water-sealing grouting construction.

A Study on Information System for Safe Transportation of Emergency Patients in the Era of Pandemic Infectious Disease (팬데믹 감염병 시대에 안전이송을 위한 정보시스템 연구)

  • Seungyong Kim;Incheol Hwang;Dongsik Kim
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.839-846
    • /
    • 2022
  • Purpose: To secure the safety of firefighters who are dispatched to emergency activities for patients with suspected infectious diseases during an epidemic, and to identify the current status of suspected infectious disease patients by region based on the information collected at the site, and manage firefighting infectious diseases that can be controlled and supported I want to develop a system. Method: Develop a smartphone app that can classify suspected infectious disease patients to check whether an infectious disease is suspected, and develop a disposable NFC tag for patient identification to prevent infection from suspected infectious disease patients. Develop a management system that collects and analyzes data related to emergency patients with suspected infectious disease input from the field and provides them to relevant business personnel to evaluate whether the transport of emergency patients with suspected infectious disease is improved. Result: As a result of the experiment, it was possible to determine whether an infectious disease was suspected through the algorithm implemented in the smartphone app, and the retransfer rate was significantly reduced by transferring to an appropriate hospital. Conclusion: Through this study, the possibility of improving emergency medical services by applying ICT technology to emergency medical services was confirmed. It is expected that the safety of paramedics will be actively secured.