• Title/Summary/Keyword: 알고리즘적 사고 문제 모델

Search Result 32, Processing Time 0.01 seconds

A Novel Algorithmic Thinking-based Problem Models & Evaluation Methods and Analysis of Problems using Material Factors in an Elementary course of Mathematics (알고리즘적 사고 문제 모델 및 평가방법의 제안과 초등수학 내용요소의 적용 및 분석)

  • Kwon, Dai-Young;Hur, Kyeong;Park, Jung-ho;Lee, Won-Gyu
    • The Journal of Korean Association of Computer Education
    • /
    • v.11 no.4
    • /
    • pp.1-12
    • /
    • 2008
  • This paper proposes basic algorithmic thinking based problem models applicable immediately without additional learnings and it problems basic problems and evaluation methods using material factors in an elementary course of mathematics For these purposes, an algorithmic thinking based problem model and it's basic problem models are proposed based on flowchart design methods with 5 degrees of difficulties. And algorithmic thinking based basic problems are developed by applying the proposed basic problem models into material domain in an elementary course of mathematics. And this paper proves the validity of developed basic problems in defining then as algorithmic thinking based basic problems through experiments and statistical analyses. The experimental results are analyzed in views of variety and effectiveness evaluation of answer algorithms and suitability of allocating 5 degrees of difficulties to the developed basic problems.

  • PDF

Development and Analysis of Elementary Dolittle Programming Problems using Algorithmic Thinking-based Problem Model (알고리즘적 사고 문제 모델을 이용한 두리틀 프로그래밍 문제 개발 및 적용)

  • Hur, Kyeong
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.2
    • /
    • pp.69-74
    • /
    • 2011
  • This paper proposes elementary Dolittle programming problems using the algorithmic thinking-based problem model with material factors in the elementary Dolittle programming. And this paper proves the validity of developed Dolittle programming problems in defining them as algorithmic thinking-based problems through experiments. The experimental results are analyzed in views of variety and effectiveness evaluation of answer algorithms and suitability of allocating degrees of difficulties to the developed Dolittle programming problems.

  • PDF

Development of Elementary Robot Programming Problems using Algorithmic Thinking-based Problem Model (알고리즘적 사고 문제 모델을 이용한 초등로봇 프로그래밍 문제 개발 및 적용)

  • Lee, Joung-Hun;Hur, Kyeong
    • Journal of The Korean Association of Information Education
    • /
    • v.14 no.2
    • /
    • pp.189-197
    • /
    • 2010
  • This paper proposes elementary robot programming problems using the algorithmic thinking-based problem model with material factors in the elementary robot programming. And this paper proves the validity of developed robot programming problems in defining them as algorithmic thinking-based problems through experiments. The experimental results are analyzed in views of variety and effectiveness evaluation of answer algorithms and suitability of allocating degrees of difficulties to the developed robot programming problems. As a result of the experiment, we find that the developed problems has various answer algorithms and suitable degrees of difficulties for elementary school students.

  • PDF

A Study of Algorithmic Thinking-Based Problems for Development of Problem Solving Ability (문제 해결 능력 향상을 위한 알고리즘적 사고 문제에 관한 연구)

  • Kim, Il-Man;Hur, Kyeong
    • 한국정보교육학회:학술대회논문집
    • /
    • 2010.01a
    • /
    • pp.319-325
    • /
    • 2010
  • 현재의 컴퓨터 교육은 정보화 사회에 필수적으로 필요한 문제해결능력을 키우기 위해 정보교과의 대부분을 차지하던 소프트웨어 활용 중심의 내용을 대폭 축소하고 컴퓨터 과학의 원리에 대한 교육을 강화되고 있다. 이러한 문제해결력을 키우기 위하여 개정된 ICT 운영지침의 컴퓨터 과학 원리에 대한 교육 내용 분석을 통한 알고리즘적 사고 문제 모델을 초등 수학과에 접목시켜 다양한 학습 문제해결 실습을 통하여 알고리즘적 사고 신장의 적합성을 검증 하고자 한다.

  • PDF

Design of Learning Model for Improving Computational Thinking Ability Based on Bebras Challenge (비버 챌린지 기반의 컴퓨팅사고력 향상을 위한 학습모델 설계)

  • Kim, Jung-Sook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.563-564
    • /
    • 2018
  • 컴퓨팅사고(computational thinking)란 기존의 인간사고와는 달리 컴퓨터를 활용하여 문제를 해결하는 과정에서의 여러가지 특성과 기질을 포함하는 문제해결과정이다. 이는 SW중심사회와 4차산업혁명의 도래로 인해 인공지능과 신경망 등 첨단의 소프트웨어 기술을 발전시킬 수 있는 기반이 되며, 매우 복잡한 문제를 알고리즘적인 방법으로 해결하는데 쓰일 수 있어서, 효율적인 결과를 보여줄 수 있다. 본 논문에서는 비버 챌린지 기반의 컴퓨팅사고력 향상을 위한 학습모델을 제안하였다.

  • PDF

A Study on the Level of Algorithmic Thinking of Students in Elementary and Secondary Schools (초중등 학습자의 알고리즘적 사고 수준 측정 연구)

  • Shim, Jaekwoun
    • Journal of Creative Information Culture
    • /
    • v.5 no.3
    • /
    • pp.237-243
    • /
    • 2019
  • The ability of problem-solving, communicating, and collaborating with computing technology is considered as core competencies for future society. In order to improve those competences, the algorithm and programming ability was set as the important goal of the Information curriculum of Korea. Algorithmic thinking is a key component of computing thinking, and it is known to play a very important role in designing and programming algorithms. It is used to set goals of Information curriculum and to measure student achievement. Therefore, in this study, developed a test to measure algorithmic thinking of students in elementary, middle and high schools, and applied the test to measure the levels of algorithmic thinking. As a result of the analysis, the higher the school level, the better the algorithmic thinking. And no difference was found between genders. This study is expected to provide a guide for constructing measures or setting the difficulty level for algorithmic thinking.

Development of Algorithm Design Worksheets using Algorithmic Thinking-based Problem Model in Programming Education for Elementary School Students (초등학생의 프로그래밍 학습을 위한 알고리즘적 사고 문제 모델 기반의 활동지 개발 및 적용)

  • Kim, Yongcheon;Choi, Jiyoung;Kwon, Daiyoung;Lee, Wongyu
    • Journal of The Korean Association of Information Education
    • /
    • v.17 no.3
    • /
    • pp.233-242
    • /
    • 2013
  • "Problem-solving methods and procedures" sections in the 2009 revised informatics curriculum emphasized active use of algorithmic thinking to solve problems. And it is proposed to solve the various problems of real life using programming language for the implementation of the algorithm. Recently, various Educational Programming Language has been developed for elementary programming activity and many researches showed that students' cognitive burden was reduced in learning programming language with Educational Programming Languages. However implementation of the algorithm is difficult for novice programmer. For the reason, effective way is required for elementary students to connect design of the algorithm and implementation of the algorithm. Therefore, in this study propose the algorithm design worksheets that it is possible to create an algorithm to describe the content needed to implementation in programming education. And this study proved the effect of the algorithm design learning tools through experiment.

An Analysis of Intuitive Thinking of Elementary Students in Mathematical Problem Solving Process (수학 문제해결 과정에 나타난 초등학생들의 직관적 사고 분석)

  • You, Dae-Hyun;Kang, Wan
    • Education of Primary School Mathematics
    • /
    • v.12 no.1
    • /
    • pp.1-20
    • /
    • 2009
  • The purposes of this study are to analyze elementary school student's intuitive thinking in the process of mathematical problem solving and to analyze elementary school student's errors of intuitive thinking in the process of mathematical problem solving. According to these purposes, the research questions can be set up as followings. (1) How is the state of illumination of the elementary school student's intuitive thinking in the process of mathematical problem solving? (2) What are origins of errors by elementary school student's intuitive thinking in the process of mathematical problem solving? In this study, Bogdan & Biklen's qualitative research method were used. The subjects in this study were 4 students who were attending the elementary school. The data in this study were 'Intuitine Thinking Test', records of observation and interview. In the interview, the discourses were recorded by sound and video recording. These were later transcribed and analyzed in detail. The findings of this study were as follows: First, If Elementary school student Knows the algorithm of problem, they rely on solving by algorithm rather than solving by intuitive thinking. Second, their problem solving ability by intuitive model are low. What is more they solve the problem by Intuitive model, their Self- Evidence is low. Third, in the process of solving the problem, intuitive thinking can complement logical thinking. Last, in the concept of probability and problem of probability, they are led into cognitive conflict cause of subjective interpretation.

  • PDF

Designing an Intelligent Data Coding Curriculum for Non-Software Majors: Centered on the EZMKER Kit as an Educational Resource (SW 비전공자 대상으로 지능형 데이터 코딩 교육과정 설계 : EZMKER kit교구 중심으로)

  • Seoung-Young Jang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.901-910
    • /
    • 2023
  • In universities, programming language-based thinking and software education for non-majors are being implemented to cultivate creative and convergent talent capable of leading the digital convergence era in line with the Fourth Industrial Revolution. However, learners face difficulties in acquiring the unfamiliar syntax and programming languages. The purpose of this study is to propose a software education model to alleviate the challenges faced by non-major students during the learning process. By introducing algorithm techniques and diagram techniques based on programming language thinking and using the EZMKER kit as an instructional model, this study aims to overcome the lack of learning about programming languages and syntax. Consequently, a structured software education model has been designed and implemented as a top-down system learning model.

A Study on Object Detection and Warning Model for the Prevention of Right Turn Car Accidents (우회전 차량 사고 예방을 위한 객체 탐지 및 경고 모델 연구)

  • Sang-Joon Cho;Seong-uk Shin;Myeong-Jae Noh
    • Journal of Digital Policy
    • /
    • v.2 no.4
    • /
    • pp.33-39
    • /
    • 2023
  • With a continuous occurrence of right-turn traffic accidents at intersections, there is an increasing demand for measures to address these incidents. In response, a technology has been developed to detect the presence of pedestrians through object detection in CCTV footage at right-turn areas and display warning messages on the screen to alert drivers. The YOLO (You Only Look Once) model, a type of object detection model, was employed to assess the performance of object detection. An algorithm was also devised to address misidentification issues and generate warning messages when pedestrians are detected. The accuracy of recognizing pedestrians or objects and outputting warning messages was measured at approximately 82%, suggesting a potential contribution to preventing right-turn accidents