• Title/Summary/Keyword: 안테나 방사 패턴

Search Result 493, Processing Time 0.024 seconds

Design of UWB Antenna with Fork-type structure and circular patch (원형 패치와 포크형 구조가 결합된 UWB 안테나)

  • Ha, Yun-Sang;Kim, Gi-Rae;Choi, Young-Kyu;Yun, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1837-1844
    • /
    • 2016
  • This paper proposes an antenna of the fork type structure that operates in the UWB (Ultra Wide Band) frequency band (3.1 ~ 10.6 GHz). The proposed antenna is attached a circular patch in order to obtain the UWB band characteristics to the fork-type patch antenna. The ground plane is implemented in a arc-shape configuration. The effect of various parameters of the modified fork type radiating patch and partial arc ground plane for UWB operation is investigated. The proposed antenna is made of $34.0{\times}50.0{\times}1.0mm^3$ and is fabricated on the permittivity 4.4 FR-4 substrate. The experiment results shown that the proposed antenna obtained the -10 dB impedance bandwidth 8200 MHz (2.7 ~ 10.9 GHz) covering the UWB bands. This result satisfied the characteristics of ultra-wideband and the proposed antenna will be applicable to an ultra wideband system.

A Design and Manufacture of Modified Rhombus Slot UWB antenna with Fork-shaped-Fed (포크 모양의 급전 구조를 갖는 변형된 마름모 슬롯 UWB 안테나 설계 및 제작)

  • Kim, Jong-Hwa;Kim, Gi-Rae;Yoon, Joong-Han
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.630-632
    • /
    • 2016
  • In this paper, we propose a modified rhombus slot UWB(Ultra Wide Band) antenna with fork-shaped feeding structure. The proposed modified rhombus slot structure is eliminated upper and lower part of the basic rhombus slot shape to get ultra-wideband characteristics for UWB communication. Also, feeding structure is used to fork-shaped structure to get ultra-wideband characteristics. The antenna is designed on an FR-4 substrate of which the dielectric constant is 4.4, and its overall size is $34mm(W1){\times}34mm(L1){\times}1mm(t)$, and its slot antenna size is $30mm(W2){\times}16.75mm(L3+L4)$. After the optimized process, the proposed antenna is fabricated and measured. Measured result. fabricated antenna satisfied -10 dB impedance bandwidth in UWB frequency band (3.1 ~ 10.6 GHz ). And measured results of gain and radiation patterns characteristics displayed determined for operating bands.

  • PDF

Design of a Dual-Band Loop-Type Ground Antenna Using Lumped-Elements (집중 소자를 사용한 이중 대역 루프형 그라운드 안테나 설계)

  • Lee, Hyung-Jin;Liu, Yang;Lee, Jae-Seok;Kim, Hyung-Hoon;Kim, Hyeong-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.551-558
    • /
    • 2012
  • This paper presents a dual band loop-type ground antenna using lumped-elements that control the impedance bandwidth and resonant frequency. The dual-band operation of the proposed antenna is realized by inserting an additional resonated loop feed structure into the reference ground antenna. As the proper value of the capacitor and the inductor are chosen, the impedance bandwidth of our antenna with voltage standing wave ratio(VSWR) equal to 3 is 85 MHz and 725 MHz at the 2.45 and 5.5 GHz frequency band, respectively. Its validity is demonstrated via both the computed and measured results. Good antenna patterns and efficiencies are achieved at the dual frequency bands, as well as the physically small antenna element size($10{\times}5mm^2$).

Antenna Design of Mobile Frequency bands for Vehicular Application (휴대 단말 주파수 대역에서 동작하는 차량용 안테나 설계)

  • Lee, Seung-Jae;Yoon, Joong-Han;Lee, Jin-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.337-341
    • /
    • 2011
  • This paper presents the design of a novel integrated mobile antenna for vehicles. The proposed antenna fabricated on a low cost easily available FR4 substrate, which effectively covers both dual band operation. The proposed mobile antenna is a modified G-type patch antenna that can operate in various frequency bands, GSM (880~960 MHz), AMPS (824~894MHz), DCS (1710~1880MHz), PCS (1850~1990MHz), UMTS (1920~2170). Experimental results indicate that the impedance bandwidth (VSWR 1:2.5) of the proposed mobile antenna agree that of the simulation results. It was validated that the configuration can meet the demands of Mobile frequency bands and effectively enhanced the impedance bandwidth to 36.46% for the lower band and 27.84% for the upper band. This paper also presents and discusses the 3D radiation patterns and gains according to the results of the experiment.

More compact rectangular two stepped slot antenna for Wi-Fi dual band application (더욱 소형화된 와이파이 이중대역용 직사각형 2단 계단식 슬롯 안테나)

  • Kim, Min-woo;Lee, Yeong-min;Lee, Hee-jae;Lee, Young-soon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.17-23
    • /
    • 2021
  • In the present study, a more compact dual-band slot antenna is newly proposed for Wi-Fi application. The proposed antenna is composed of rectangular two stepped slot with open end which can generate standing wave resonance at dual frequency bands and L-type microstrip feed line. The measured impedance bandwidths are 50 MHz(2.412 ~ 2.470 GHz) at low frequency band and 452 MHz(5.451 ~ 5.903 GHz) at high frequency band respectiviely. Furthermore its size of 14 × 21 mm2 is reduced by 30% compared to the size of 20 × 21 mm2 of a conventional similar compact slot antenna. It has the omni-directional radiation pattern characteristics of a typical dipole antenna on the H-Plane, so it is suitable for commercial wireless network applications such as Wi-Fi.

Configuration of a 16-Element Array Antenna Design to Improve Signal Detection Performances (신호탐지 정확도를 높이기 위해 최적 배열형상을 고려한 16소자 배열안테나 설계)

  • Jang, Doyoung;Yoo, Sungjun;Wang, Jinchun;Lee, Jun-Yong;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.6
    • /
    • pp.438-444
    • /
    • 2019
  • In this paper, we proposed a 16-element array antenna design to improve signal detection performances. The array antenna characteristics, such as mutual coupling, pattern deviation, and half power beamwidth of the active element, were examined to obtain an optimal spacing between individual elements. The single element of the array antenna consists of an indirect feed using L-shaped feed and shorted radiating patch to achieve a broadband operation. Root mean square(RMS) errors based on the incident angle of the signal were calculated to verify the signal detection performance of the proposed antenna. The results demonstrate that the proposed array antenna with optimal spacing is suitable for detecting interference signals with low RMS error.

Design and Fabrication of a Dual Linear Polarization Sinuous Antenna with Improved Cross Polarization Isolation (교차편파 격리도를 개선한 이중선형 편파 시뉴어스 안테나의 설계 및 제작)

  • Kim, Jee-heung;Ryu, Hong-kyun;Chae, Myung-ho;Kim, Jung-hoon;Park, Beom-jun;Park, Young-ju
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.123-132
    • /
    • 2018
  • In this paper, we design and fabricate a dual liner polarization sinuous antenna with improved cross polarization isolation (XPI). The proposed antenna is composed of four arm radiators for generating dual linear polarization and excited by wideband microstrip balun with Klopfenstein taper structure. Also, two-step cylindrical cavity structure is applied to reduce back radiation. Honeycomb-typed absorbing material is inserted into the cavity to reduce performance degradation by reflected wave. To enhance cross polarization isolation in low frequency band, resistors are adapted between outer arm and the rim of cavity. We confirmed that the fabricated antenna can be applied for polarization measurement due to improved XPI in the low band.

Design of the Dual Linear Polarized Radiation Element Using a Open-Ended Ridge Waveguide (개방된 리지 도파관을 이용한 이중 선형 편파 방사 소자 설계)

  • Ko, Ji-Whan;Chun, Jong-Hoon;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1294-1302
    • /
    • 2008
  • A design approach for a radiation element of dual polarization, which can be implemented in the waveguide structure, is proposed. For minimization of the radiating element, the ridged waveguide type is used and for dual polarization, the microstrip type of printed dipole structure is additionally installed inside the waveguide. In order to validate the design approach, $1{\times}4$ array antenna is fabricated and its performances such as return loss, co-polarization coupling between adjacent channels, and radiation patterns are investigated. Theory and experiment are observed to be in good agreement. The radiating structure is thought to be a useful one in an application to the phased array antenna system, in particular, requiring dual polarization characteristics.

Wide Bandwidth PIFA Design Using Reactive Element (리액티브 소자를 이용한 광대역 PIFA 설계)

  • Jo, Ha-Seok;Moon, Sung-Jin;Park, Kyong-Nam;Lee, Jae-Seok;Kim, Hyeong-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.387-392
    • /
    • 2014
  • In this paper, the broadband antenna design, which can be applied to USB Dongle, supporting Wibro(2.3~2.4 GHz), Wi-Fi(2.4~2.5 GHz) and LTE7(2.5~2.7 GHz) is proposed technique. The proposed antenna was designed similar to PIFA type antennas. Reactive elements were used to control the input impedance and wideband characteristics were achieved by controlling coupling between the feed structure and the radiator. As a result, the antenna printed on FR-4 PCB(${\epsilon}_r$ =4.4, tan ${\delta}$=0.02) occupying an area of $15{\times}5mm^2$ was able to achieve bandwidth of 1 GHz from 2.1 to 3.1 GHz under VSWR=2. Measured return loss characteristics, bandwidth and radiation patterns were in good agreement with the simulated results.

Design and Fabrication of Multiple U-shaped slot Microstrip Antenna for 5.25GHZ Band Wireless LAN (5-25GHZ 대역 무선 LAN 다중 U 슬롯 모양의 마이크로스트립 안테나 설계 및 제작)

  • 윤중한;정계택;최현규;곽경섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6A
    • /
    • pp.414-424
    • /
    • 2003
  • In this paper, a multiple U-shaped slot antenna for 5.25㎓~5.35㎓ is designed, fabricated, and measured. The prototype consists of U-slot and two invert U-slot. To obtain enough bandwidth, the foam layer is inserted between ground plane and substrate. Important parameters in the design are U-slot length, width, position, airgap length, and feed point. From these parameters optimized, a multiple U-shaped slot antenna is fabricated and measured. The measured results of the antenna are compared with its simulated results. The resonant frequency of the fabricated multiple U-shaped slot antenna is 5.25㎓ the bandwidth for approximately 7.4%(VSWR<1.5) and the gain is 2.9~5.3dBi. The experimental far-field patterns are stable across the pass band. The 3dB bandwidth in H-Plane and I-Plane are 62$^{\circ}$ and 50$^{\circ}$, respectively.