DOI QR코드

DOI QR Code

Configuration of a 16-Element Array Antenna Design to Improve Signal Detection Performances

신호탐지 정확도를 높이기 위해 최적 배열형상을 고려한 16소자 배열안테나 설계

  • Jang, Doyoung (School of Electronic and Electrical Engineering, Hongik University) ;
  • Yoo, Sungjun (School of Electronic and Electrical Engineering, Hongik University) ;
  • Wang, Jinchun (Electronics and Telecommunications Research Institute) ;
  • Lee, Jun-Yong (School of Computer Engineering, Hongik University) ;
  • Choo, Hosung (School of Electronic and Electrical Engineering, Hongik University)
  • 장도영 (홍익대학교 전자전기공학과) ;
  • 류성준 (홍익대학교 전자전기공학과) ;
  • 왕진천 (한국전자통신연구원 부설연구소) ;
  • 이준용 (홍익대학교 컴퓨터공학과) ;
  • 추호성 (홍익대학교 전자전기공학과)
  • Received : 2019.04.11
  • Accepted : 2019.06.21
  • Published : 2019.06.30

Abstract

In this paper, we proposed a 16-element array antenna design to improve signal detection performances. The array antenna characteristics, such as mutual coupling, pattern deviation, and half power beamwidth of the active element, were examined to obtain an optimal spacing between individual elements. The single element of the array antenna consists of an indirect feed using L-shaped feed and shorted radiating patch to achieve a broadband operation. Root mean square(RMS) errors based on the incident angle of the signal were calculated to verify the signal detection performance of the proposed antenna. The results demonstrate that the proposed array antenna with optimal spacing is suitable for detecting interference signals with low RMS error.

본 논문에서는 간섭 신호원의 방향을 정확히 탐지 및 식별하기 위해 상호결합특성을 고려한 16소자 배열안테나의 배열 형상 및 개별소자 구조에 대해 연구하였다. 제안된 배열 안테나는 상호결합특성, 능동소자패턴의 편차, 반전력빔폭을 고려하여 개별소자의 접지면간 이격거리를 도출하였다. 개별소자는 마이크로스트립 패치안테나로 구성되며, 광대역 특성 및 안테나의 소형화를 위해 접지면과 연결된 방사체 및 L 모양의 간접 급전 급전부로 구성된다. 제안된 안테나를 사용한 신호탐지 성능 평가 결과 제시된 시나리오 범위 내에서 낮은 RMS(root mean square) error의 성능을 갖는 것을 확인하였다.

Keywords

JJPHCH_2019_v30n6_438_f0001.png 이미지

그림 1. 제안된 4×4 사각 배열 패치안테나 형상 Fig. 1. Geometry of the proposed patch antenna with 4×4 planar array.

JJPHCH_2019_v30n6_438_f0002.png 이미지

그림 2. 제안된 개별소자의 반사계수 특성 Fig. 2. Reflection coefficient characteristic of the proposed element.

JJPHCH_2019_v30n6_438_f0003.png 이미지

그림 3. g에 따른 상호결합 및 패턴 왜곡 특성(2.4 GHz) Fig. 3. Mutual coupling and pattern distortion characteristic according to g.

JJPHCH_2019_v30n6_438_f0004.png 이미지

그림 5. 배열 안테나의 빔조향 특성(2.4 GHz, φ=90°). Fig. 5. Beam steering characteristic of the proposed antenna.

JJPHCH_2019_v30n6_438_f0005.png 이미지

그림 6. 배열안테나의 DoA 추정 성능(2.4 GHz) Fig. 6. DoA estimation performance of the proposed antenna.

JJPHCH_2019_v30n6_438_f0006.png 이미지

그림 4. 제작된 배열안테나 사진. Fig. 4. Photographs of the fabricated array antenna.

표 1. 제안된 안테나에 사용된 설계 변수 Table 1. Parameters for proposed antenna.

JJPHCH_2019_v30n6_438_t0001.png 이미지

References

  1. Q. Liang, B. Sun, and G. Zhou, "Multiple beam parasitic array radiator antenna for 2.4 GHz WLAN applications," IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 12, pp. 2513-2516, Dec. 2018. https://doi.org/10.1109/LAWP.2018.2880208
  2. H. A. Damis, N. Khalid, R. Mirzavand, H. Chung, and P. Mousavi, "Investigation of epidermal loop antennas for biotelemetry IoT applications," IEEE Access, vol. 16, pp. 15806-15815, 2018.
  3. Y. W. Chi, K. L. Wong, "Internal compact dual-band printed loop antenna for mobile phone application," IEEE Transactions on Antennas and Propagation, vol. 55, no. 5, pp. 1457-1462, 2007. https://doi.org/10.1109/TAP.2007.895641
  4. T. Wang, T. Liang, J. Fan, and X. Wei, "Sequential opening multi-jammers localisation in multi-hop wireless network," IET Information Security, vol. 12, no. 5, pp. 445-454, Sep. 2018. https://doi.org/10.1049/iet-ifs.2017.0346
  5. C. Zhu, W. Wang, H. Chen, and H. C. So, "Impaired sensor diagnosis, beamforming, and DOA estimation with difference co-array processing," IEEE Sensors Journal, vol. 15, no. 7, pp. 3773-3780, Jul. 2015. https://doi.org/10.1109/JSEN.2015.2399510
  6. C. Liu, P. P. Vaidyanathan, "Super nested arrays: Linear sparse arrays with reduced mutual coupling: Part II: High-order extensions," IEEE Transactions on Signal Processing, vol. 64, no. 16, pp. 4203-4217, Aug. 2016. https://doi.org/10.1109/TSP.2016.2558167
  7. J. Yun, D. Park, D. Jang, and K. C. Hwang, "Isolation improvement in vivaldi antennas using DSRR," The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 29, no. 10, pp. 739-744, Oct. 2018. https://doi.org/10.5515/KJKIEES.2018.29.10.739
  8. Q. Liu, M. X. Zhu, Y. B. Wang, J. B. Deng, Y. Li, and G. J. Zheng, et al., "UHF antenna array arrangement optimization for partial discharge direction finding in air-insulted substation based on phased array theory," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 24, no. 6, pp. 3657-3688, Dec. 2017. https://doi.org/10.1109/TDEI.2017.006615
  9. M. Guo, Y. D. Zhang, and T. Chen, "DOA estimation using compressed sparse array," IEEE Transactions on Signal Processing, vol. 66, no. 15, pp. 4133-4146, Aug. 2018. https://doi.org/10.1109/TSP.2018.2847645
  10. M. G. Pralon, G. D. Galdo, M. Landmann, M. A. Hein, and R. S. Thoma, "Suitability of compact antenna arrays for direction-of-arrival estimation," IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 7244-7256, Dec. 2017. https://doi.org/10.1109/TAP.2017.2757968
  11. J. Kim, H. Ryu, Y. J. Park, and B. Lee, "Design and fabrication of ultrawideband spinning direction finding antenna for airborne applications," The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 29, no. 4, pp. 320-323, Apr. 2018. https://doi.org/10.5515/KJKIEES.2018.29.4.320
  12. X. Zhang, Y. Li, X. Yang, T. Long, and L. Zheng, "Sub-array weighting UN-MUSIC: A unified framework and optimal weighting strategy," IEEE Signal Processing Letters, vol. 21, no. 7, pp. 871-874, Jul. 2014. https://doi.org/10.1109/LSP.2014.2312848
  13. S. Kim, J. Han, Y. Jang, and J. Choi, "Study on $2{\times}2$ subarray antenna for implementation of VHF band active electronically scanned array," The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 29, no. 6, pp. 473-476, Jun. 2018. https://doi.org/10.5515/KJKIEES.2018.29.6.473
  14. Altair Engineering, Inc., "Altair FEKO suite 2018.2," 2018. http://www.feko.info
  15. M. Pazokian, N. Komjani, and M. Karimipour, "Broadband RCS reduction of microstrip antenna using coding frequency selective surface," IEEE Antenna and Wireless Propagation Letters, vol. 17, no. 8, pp. 1382-1385, Aug. 2018. https://doi.org/10.1109/LAWP.2018.2846613
  16. G. Byun, H. Choo, and H. Ling, "Optimum placement of DF antenna elements for accurate DoA estimation in a harsh platform environment," IEEE Transactions on Antennas and Propagation, vol. 61, no. 9, pp. 4783-4791, Sep. 2013. https://doi.org/10.1109/TAP.2013.2269132