• Title/Summary/Keyword: 안정변형해석기법

Search Result 68, Processing Time 0.03 seconds

EDISON CFD를 이용한 2차원 선박단면 형상의 입수 충격에 대한 연구

  • Jang, Dong-Jin;Choe, Yeong-Min
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.560-565
    • /
    • 2016
  • 최근 대형 컨테이너선의 개발이 지속적으로 이루어짐에 따라 슬래밍에 의한 선수 및 선미의 구조안정성 문제가 대두되고 있지만 설계 단계에서 슬래밍에 대해 고려하기에는 현상의 복잡성으로 인해 어려움이 많았다. 이를 위해 KRISO에서 시행된 WILS JIP의 선수 단면 형상 및 선미 단면인 쐐기 형상으로 격자를 생성하여 EDISON CFD 다상유동 해석자를 통해 수치해석을 시도하였다. 기존 방식과 달리 계산 시간 절감을 위하여 격자 변형 기법을 적용하지 않고 모형 시험결과를 기반으로 한 유입류 조건을 설정하여 입수 충격 문제를 해석해보았다. 그 결과, 선미 형상의 경우 선행연구와 유사하게 실험 결과에 근접한 유체 충격력을 정량적으로 얻어낼 수 있었다. 선수 형상의 경우에서는 구상 선수로 인해 파생되는 센서 위치별 충격력의 변화를 확인할 수 있었으며, 실제 유동에 가까운 유동 형상과 슬래밍에 의한 충격력을 개략적으로 구할 수 있었다.

  • PDF

Settlement Behavior Prediction of CFRD After Impounding (CFRD의 담수 후 침하 거동 예측)

  • Kim, Yong Seong;Kim, Bum Joo;Shin, Dong Hoon;Park, Han Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.209-218
    • /
    • 2006
  • In this study, stress and deformation of CFRD during its construction and impounding were analyzed and compared with its monitoring results. Moreover, deformation characteristics of CFRD after impounding were evaluated based on the settlement monitoring records of total 23 domestic and foreign CFRDs during construction and impounding. The investigation on the behavior of CFRD indicated that the influence of impounding on its stability was minimal although slight increases in vertical and horizontal stresses and strains were observed. Also, one method was proposed to predict a crest settlement from multi-layer settlements by applying the best fit method. It is expected that the results of this study would provide practical information for the design, construction, and management of CFRD.

Structural Analysis of TPU Membrane Plate in Multi-purpose Module for Solid-liquid Separation (TPU 재질을 적용한 다목적 고액분리 모듈의 여과판 구조해석)

  • Jung, Hee Suk;Oh, Doo Young;Ko, Dong Shin;Song, Hyoung Woon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.5-13
    • /
    • 2017
  • Polypropylene is the main existing material in the domestic market being used for the filter plate because of its moldability, low cost, and commercial availability. Polypropylene filter plate once distorted due to the high-pressure during operation may cause the problem in the continuous operation of the solid-liquid separation module. Thermoplastic Poly Urethane (TPU) can be a high-performance alternative material for the filter plate in the solid-liquid separation module of the dehydration process. Hence, to predict and evaluate the TPU for structural stability in the filter plate through analytical techniques designed and experimental verification is essential. As a result, TPU filter plate had maximum strain of 27.85 MPa at 20 bar pressure condition. This result is less than TPU stress-strain limit, which ensures the structural stability of the TPU material.

Fluid-structure interaction analysis on a low speed 200 W-class gyromill type vertical axis wind turbine rotor blade (200 W급 자이로밀형 수직축 풍력터빈 로터 블레이드 유체-구조 연성 해석)

  • Cho, Woo-Seok;Choi, Young-Do;Kim, Hyun-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.344-350
    • /
    • 2013
  • The purpose of this study is to examine the structural stability of a low speed 200 W class gyromill type vertical axis wind turbine system. For the analysis, a commercial code is adopted. The pressure distribution on the rotor blade surface is examined in detail. In order to perform unidirectional FSI(Fluid-Structure Interaction) analysis, the pressure resulted from CFD analysis has been mapped on the surface of wind turbine as load condition. The rotational speed and gravitational force of wind turbine are also considered. The results of FSI analysis show that the wind turbine reveals an enough structural margin. The maximum structural displacement occurs at trailing edge of blade and the maximum stress occurs at the strut.

A Study on Change of Safety Factor according to Slope Analysis Method using Strength Parameters and Slope Change (강도 정수와 경사도 변화를 활용한 비탈면 해석기법에 따른 안전율 변화에 관한 연구)

  • Moon, Hyojong;Shim, Jeonghoon;Jeong, Jisu;Lee, Seungho
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • The slope stability analysis by the limit equilibrium method has the disadvantage that it can be applied only when the analysis is performed by setting the critical plane after analyzing the active surface many times and the soil is uniform and only the safety factor can be calculated. However, the analysis using the strength reduction analysis method has advantages that the engineer can judge various aspects and calculate the safety factor. In this study, the safety factor according to the change of slope and shear strength was compared and analyzed using limit equilibrium analysis and strength reduction method. It is suggested that it is desirable to use the strength reduction method which can synthetically review the stress, displacement, and strain in the soil.

Analysis of ground behavior for model tunnel excavation with pipe roof reinforcement using close range photogrammetric technique (근거리 사진계측기법을 이용한 강관보강 모형터널굴착의 지반거동 분석)

  • Lee, Jung-Hwan;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.387-402
    • /
    • 2014
  • In congested urban areas, constructions of tunnel structures have became necessary due to a lack of surface space. The excavation of any tunnel generated the ground disturbances of surrounding ground and displacements is major concern. Therefore, a study of tunnel stability is necessary. In this study, the authors have investigated the stability and failure pattern of tunnel through the model tunnel test. In this study, the close range photogrammetry was used to measure the ground deformation. The measured data was converted to displacement vectors and contours. And then it compared to FE analysis and empirical formula. In addition, this study presented the comparison between steel pipe reinforced model tunnel and unreinforced model tunnel. The ground deformation for both the steel pipe reinforced model tunnel and the unreinforced model tunnel was analysed.

Analytical Technique on CFTA Girder Bridge Considering Construction Sequence (시공단계를 고려한 CFTA 거더교의 해석기법)

  • Park, Seung-Jae;Kim, Yong-Jae;Jeon, Jong-Su;Park, Myoung-Gyun;Park, Kyung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.167-168
    • /
    • 2009
  • The CFT structure is applied to newly developed CFTA girder because of improvement of ductility deformation, stiffness and internal force of structure owing to the interaction between steel tube and core concrete. CFTA girder is the structure which can reduce tensile stress due to external loads by using its arch shape and prestress force. This paper proposed constructional stage procedure and represented analytical technique considering constructional stage to investigate the safety against bridge collapse on construction and on operation.

  • PDF

Characteristics of the Shaped Hole Film Cooling in Gas Turbine (가스터빈에서 변형홀을 사용한 막냉각 특성 해석)

  • 이동호;김병기;조형희
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.7-7
    • /
    • 1998
  • 가스터빈 엔진의 효율 및 성능은 터빈입구온도에 크게 좌우되므로, 높은 열효율을 얻기 위하여 최근 가스터빈 엔진은 높은 입구온도(대략 1400-150$0^{\circ}C$)에서 작동되도록 설계되고 있다. 이는 요소재질의 열한계점을 훨씬 상회하며, 이와 같은 입구온도의 고온화 경향은 터빈요소에 대한 열부하를 증가시키고 있다. 따라서 극한의 작동조건하에서의 허용수명 및 안정성의 유지를 위해서 내부대류냉각, 충돌세트냉각과 더불어 막냉각기법이 많이 응용되고 있다. 막냉각기법은 연소기 벽면 혹은 터빈블레이드 표면의 작은 구멍들을 통해서 압축기의 공기를 분사하여 표면에 고온의 유체와 일종의 단열벽을 형성하여 표면을 보호하는 냉각방법이다. 지금까지는 주로 단면적이 일정한 막냉각홀에 대한 연구가 주가 되어왔으나, 이러한 막냉각홀을 이용하는 경우 많은 문제점이 발생한다.

  • PDF

Strain-Hardening Cementitious Composites with Low Viscosity Suitable for Grouting Application (그라우팅에 적합한 점성을 갖는 변형률 경화 시멘트 복합재료)

  • Lee, Bang Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.55-63
    • /
    • 2012
  • This paper presents materials and processing technique to manufacture low viscous strain-hardening cementitious composite which is suitable for structures requiring low viscosity of materials. The micromechanics and fracture mechanics tools coupled with processing techniques were adopted to achieve low viscosity of composites as well as high tensile strain capacity. Optimal volume and length of fibers and interfacial properties between fibers and matrix for composites with tensile strength of 2~3MPa were determined on the basis of the micromechanical analysis and the steady-state cracking theory. Then six mixtures were determined and the experiment was carried out to evaluate the viscosity and uniaxial tensile performance of those. From the test results, it is verified that the strain-hardening cementitious composite with low viscosity suitable for grouting applications in fresh state as well as high ductility over 1.5% in hardened state can be feasible.

A Non-consecutive Cloth Draping Simulation Algorithm using Conjugate Harmonic Functions (켤레조화함수를 이용한 비순차적 의류 주름 모사 알고리즘)

  • Kang Moon Koo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.3
    • /
    • pp.181-191
    • /
    • 2005
  • This article describes a simplified mathematical model and the relevant numerical algorithm to simulate the draped cloth on virtual human body. The proposed algorithm incorporates an elliptical, or non-consecutive, method to simulate the cloth wrinkles on moving bodies without resorting to the result of the past time-steps of drape simulation. A global-local analysis technique was employed to decompose the drape of cloths into the global deformation and the local wrinkles that will be superposed linearly The global deformation is determined directly by the rotation and the translation of body parts to generate a wrinkle-free yet globally deformed shape of cloth. The local wrinkles are calculated by solving simple elliptical equations based on the orthogonality between conjugate harmonic functions representing the wrinkle amplitude and the direction of wrinkles. The proposed method requires no interpolative time frames even for discontinuous body postures. Standing away from the incremental approach of time integration in conventional methods, the proposed method yields a remarkable reduction of CPU time and an enhanced stability. Also, the transient motion of cloth could be achieved by interpolating between the deformations corresponding to each static posture.