• Title/Summary/Keyword: 안전작동

Search Result 552, Processing Time 0.02 seconds

PSECF (Policy Streams & Expert Group Standing Change Framework) for Wartime Operational Control Transition (전시작전통제권 전환에 관한 정책흐름 및 전문가집단 위상변동모형 사례분석)

  • Park, SangJung;Koh, Chan
    • Journal of Digital Convergence
    • /
    • v.12 no.7
    • /
    • pp.37-47
    • /
    • 2014
  • This study applies Policy Streams and Expert Group Standing Change Framework (PSECF) proposed by SangJung Park and Chan KOH to analyze the Roh's Participatory government's decision making process on the wartime Operational Control (OPCON) transition. PSECF case study's results are as follows: Strong commitments of the former president Roh Moohyun and the progressive National Security Committee (NSC) were primary drivers in the policy developing process. But military expert groups such as the Ministry of National Defense (MND) and the Joint Chiefs of Staffs (JCS) were thoroughly excluded due to their passive role against the wartime OPCON transition. After the policy resolution, the standing of expert groups changed: the standing of advocate effects, the former progressive NSC who led the wartime OPCON transition in the Roh's Participatory government, went down but the conservatives such as ROK MND and JCS improve their standing because the conservative government kicks off 8 months later from the policy decision. In conclusion, the proposed PSECF through the Roh's Participatory government's case-study is worthy as an explanatory framework for high level national policies.

A Study on Wedge Angles of Wedge-type Rail Clamp for Preventing Jaw from Rotating (쐐기형 레일 클램프에서 조(jaw)의 회전을 방지하기 위한 적정 쐐기각에 대한 연구)

  • Shim J. J.;Lee S. W.;Han D. S.;Park J. S.;Jeon Y. H.;Lee H.;Han G. J.;Ahn C. W.
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.735-740
    • /
    • 2005
  • In this paper, we designed a wedge type rail-clamp which can protect container crane from sudden wind blast with constant clamping force regardless of the operating period. When we design wedge type rail clamp, it is important to determine an angle of wedge which prevent rotating of jaw and for smooth operation when wind blows. Therefore, this paper suggest a process to decide an angle of wedge within proper range obtained by experimental analysis as well as FEA of the wedge type rail clamp. A model with $6^{\circ}$ wedge angle is the most proper model to use in rail clamp bemuse it generated satisfactory clamping force and rotating angle underdesign specification.

Leakage Localization with an Acoustic Array that Covers a Wide Area for Pipeline Leakage Monitoring in a Closed Space (닫힌 공간에서의 광역배관 누출 감시를 위한 배열센서를 이용한 누설 위치 검출)

  • Park, Choon-Su;Jeon, Jong-Hoon;Park, Jin-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.422-429
    • /
    • 2013
  • It is of great importance to localize leakages in complex pipelines for assuring their safety. A sensor array that can detect where leakages occur enables us to monitor a wide area with a relatively low cost. Beamforming is a fast and efficient algorithm to estimate where sources are, but it is generally made use of in free field condition. In practice, however, many pipelines are placed in a closed space for the purpose of safety and maintenance. This leads us to take reflected waves into account to the beamforming for interior leakage localization. Beam power distribution of reflected waves in a closed space is formulated, and spatial average is introduced to suppress the effect of reflected waves. Computer simulations and experiments ensure how the proposed method is effective to localize leakage in a closed space for structural health monitoring.

Development of Traffic Prediction and Optimal Traffic Control System for Highway based on Cell Transmission Model in Cloud Environment (Cell Transmission Model 시뮬레이션을 기반으로 한 클라우드 환경 아래에서의 고속도로 교통 예측 및 최적 제어 시스템 개발)

  • Tak, Se-hyun;Yeo, Hwasoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.68-80
    • /
    • 2016
  • This study proposes the traffic prediction and optimal traffic control system based on cell transmission model and genetic algorithm in cloud environment. The proposed prediction and control system consists of four parts. 1) Data preprocessing module detects and imputes the corrupted data and missing data points. 2) Data-driven traffic prediction module predicts the future traffic state using Multi-level K-Nearest Neighbor (MK-NN) Algorithm with stored historical data in SQL database. 3) Online traffic simulation module simulates the future traffic state in various situations including accident, road work, and extreme weather condition with predicted traffic data by MK-NN. 4) Optimal road control module produces the control strategy for large road network with cell transmission model and genetic algorithm. The results show that proposed system can effectively reduce the Vehicle Hours Traveled upto 60%.

Three-Dimensional Subsurface Resistivity Profile using Electrical Resistance Tomography for Designing Grounding Grid (접지 그리드 설계를 위한 전기 저항 단층촬영법에 기반한 지표의 3차원 저항률 분포 추정)

  • Khambampati, Anil Kumar;Kim, Kyung Youn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.117-128
    • /
    • 2016
  • Installation of earth grounding system is essential to ensure personnel safety and correct operation of electrical equipment. Earth parameters, especially, soil resistivity has to be determined in designing an efficient earth grounding system. The most common applied technique to measure soil resistance is Wenner four-point method. Implementation of this method is expensive, time consuming and cumbersome as large set of measurements with variable electrode spacing are required to obtain a one dimensional resistivity plot. It is advantageous to have a method which is of low cost and provides fast measurements. In this perspective, electrical resistance tomography (ERT) is applied to estimate subsurface resistivity profile. Electrical resistance tomograms characterize the soil resistivity distribution based on the measurements from electrodes placed in the region of interest. The nonlinear ill-posed inverse problem is solved using iterated Gauss-Newton method with Tikhonov regularization. Through extensive numerical simulations, it is found that ERT offers promising performance in estimating the three-dimensional soil resistivity distribution.

Experimental and Numerical Studies on Heat/Smoke Behavior due to a Fire on Underground Subway Platform (II) - Numerical Approach - (지하철 역사 승강장 화재발생시 열/연기 거동 분석을 위한 실험 및 수치 연구(II) - 수치적 접근 -)

  • Chang, Hee-Chul;Kim, Tae-Kuk;Park, Won-Hee;Kim, Dong-Hyeon
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.15-20
    • /
    • 2006
  • In this study the flow characteristics of smoke and heat on a bank type platform of the underground subway station are studied numerically by considering two different emergency operation modes. Effects of the natural flow through the tunnel and the stair ways are considered in the numerical simulations by using the measured velocities presented in Part I as the boundary condition. Distributions of heat, smoke, visible range and toxic gas on the platform are analysed for different smoke extraction flowrates corresponding to the two different emergency operation modes. The numerical results show that the extraction flowrate affects the smoke control performance significantly by improving the smoke removal performance as the extraction flowrate is increased.

Development of the Multichannel Vibration Monitoring System (다채널 진동 모니터링 장치 개발)

  • Hong, Tae-Yong;Park, Soo-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.7
    • /
    • pp.671-676
    • /
    • 2016
  • This study is about design for the Rotational Instrument of the Industry factory which is used management safety and maintenance. We developed the multichannel vibration monitering system of the self-diagnosis for middle level CMS(Condition Monitoring System) market, and that system are new features to the expandability and flexibility. Normally one channel is used for treating one signal, but developed instrument can treat four channel with one signal processing card. One rack have redundant power supply and displace and it can check vibration measurement value in field without computer. Bearing fault detection is fundamental of vibration surveillance, but sometimes can not check with vibration velocity and acceleration. So it need the filtering and the amplitude modulation on the acceleration enveloping technology when irregular vibration is happened. We developed the vibration analysis instrument which is applied such technology. And the development prototype shows activated within the vibration error limit.

Design and static structural analysis of KSLV-I upper stage cowls (KSLV-I 상단부 카울 설계 및 구조 해석)

  • An, Jae-Mo;Kim, Kwang-Soo;Jang, Young-Soon
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.111-118
    • /
    • 2007
  • KSLV-I which is being developed in KARI is composed with two stages, and adaptor ring is used for coupling stage. Cables for interconnecting between stage is exposed on the outside. Also 8 pyro bolts which are installed in adaptor ring are used for separation of stage. In general, cowl is used for protecting exposed parts or structure which are anxious about damage from outer environment. In KSLV-I, two kind of cowls are designed. The one is umbilical cowl, and the other is pyro bolt cowl. Because cowl is exposed on the outside, heat and pressure load developed from air have effect on cowls. Therefore verification of structural strength through static analysis is required. In this study, static analysis in load condition except heat load is accomplished. In result of analysis, structural strength of pyro bolt cowl is verified. But breakage of umbilical cowl is confirmed in pressure load condition. So design of umbilical cowl is modified for satisfying required structural strength. And structural strength of umbilical cowl through analysis is verified.

  • PDF

HPA Structure Design and Power Measurement (인간동력항공기 구조설계와 동력측정)

  • Lee, Chung-Ryul;Park, Ju-Won;Go, Eun-Su;Choi, Jong-Soo;Kim, In-Gul;Kim, Byoung-Soo
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.209-220
    • /
    • 2013
  • The process of designing and building a human-powered aircraft (HPA) and its performance analysis are introduced in this paper. Light Bros, the Chungnam National University HPA team, has developed Volante, a HPA, to compete in the 2012 exhibition of human-powered aircraft hosted by Korea Aerospace Research Institute. The power train system is composed of a two-blade propeller and Bevel-type gear and the ground test bed is built to simulate the operation. A study has been made to find a efficient propeller based upon the test result of thrust and power available from a pilot under various propeller conditions and running time. The load and structural analysis is conducted for the glider-shaped wing made of composite material which has very high aspect ratio. The spar is analyzed using finite element modeling followed by the comparison of its displacement and strain on structural test. As a result, the performance and safety is confirmed.

Development of Hip Joint Mechanical Stem for Minimally Invasive Surgery (최소침습술을 위한 고관절 메커니컬 스템의 개발)

  • Lee, Sunghyun;Bae, Ji-Yong;Jeon, Insu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.703-708
    • /
    • 2013
  • Conventional total hip joint replacement(THR) surgery requires a long incision and long rehabilitation time. The stem used in THR is inserted into the cancellous bone of the femur where it plays the role of the artificial joint. Minimally invasive surgery(MIS) has been devised to reduce muscle damage to patients. In this study, a mechanical stem was developed on the basis of MISto reduce the incision length through the principle of the gear. The mechanical stem consists of six components. A prototypical model for a mechanical stem was fabricated using an acryl-based polymer, and its workability was confirmed. To actualize the mechanical stem, a three-dimensional Bio-CAD modeling technique was applied. The hip joint area based on computed tomography(CT) was reconstructed. The safety of the mechanical stem by applying more load than the weight of a man under virtual surgery environment conditions was confirmed by finite element analysis.