DOI QR코드

DOI QR Code

Three-Dimensional Subsurface Resistivity Profile using Electrical Resistance Tomography for Designing Grounding Grid

접지 그리드 설계를 위한 전기 저항 단층촬영법에 기반한 지표의 3차원 저항률 분포 추정

  • Received : 2016.03.15
  • Accepted : 2016.04.06
  • Published : 2016.04.25

Abstract

Installation of earth grounding system is essential to ensure personnel safety and correct operation of electrical equipment. Earth parameters, especially, soil resistivity has to be determined in designing an efficient earth grounding system. The most common applied technique to measure soil resistance is Wenner four-point method. Implementation of this method is expensive, time consuming and cumbersome as large set of measurements with variable electrode spacing are required to obtain a one dimensional resistivity plot. It is advantageous to have a method which is of low cost and provides fast measurements. In this perspective, electrical resistance tomography (ERT) is applied to estimate subsurface resistivity profile. Electrical resistance tomograms characterize the soil resistivity distribution based on the measurements from electrodes placed in the region of interest. The nonlinear ill-posed inverse problem is solved using iterated Gauss-Newton method with Tikhonov regularization. Through extensive numerical simulations, it is found that ERT offers promising performance in estimating the three-dimensional soil resistivity distribution.

대지의 접지 시스템 설치는 안전성과 전기 기기의 올바른 작동을 위해 필수적이며, 대지 파라미터, 특히 토양의 저항률은 대지 접지 시스템 설계에서 결정되어야 한다. 토양의 저항률을 측정하기 위한 가장 흔한 방법은 Wenner의 4전극 방법이 있으며, 이 방법은 1차원의 저항률을 얻기 위하여 가변 전극 간격을 갖는 큰 측정 세트가 요구되어 번거롭고, 시간소모가 많으며 비용이 많이 든다. 전기 저항 단층촬영법은 저비용이며 빠른 측정이 가능하다는 장점 때문에 토양의 저항률 분포를 추정하기 위해 적용될 수 있다. 전기 저항 단층은 관심지역에 놓인 전극에서 얻은 측정데이터를 사용하여 토양 저항률 분포를 특성화한다. 이때 전기 단층 촬영법의 역문제는 비선형성이 강하여 저항률 분포를 추정하기 위하여 Tikhonov 조정 방법을 갖는 반복적 Gauss-Newton 방법을 사용한다. 다양한 시뮬레이션을 수행하여 3차원 토양의 저항률 분포를 추정하는데 전기 저항 단층 촬영법은 유용한 성능을 제공하고 있음을 확인하였다.

Keywords

References

  1. P. Simonds, "Designing and testing low-resistance grounding systems," IEEE Power Engineering Review, Vol. 20, no. 10, pp. 19-21, October 2000. https://doi.org/10.1109/39.876880
  2. N. H. Malik, A. A. Al-Arainy, M. I. Qureshi, M. S. Anam, "Measurement of earth resistivity in different parts of Saudi Arabia for grounding installations," in Proc. of seventh Saudi engineering conference, pp. 257-267, KSU, Riyadh.
  3. H. Yang, J. Yuan, W. Zong, "Determination of the-layer earth model from wenner four-probe test data," IEEE Trans. Magnetics, Vol. 37, no. 5, pp. 3684-3687, September 2001. https://doi.org/10.1109/20.952690
  4. I. F. Gonos, V. T. Kontargyri, I. A. Stathopulos, A.X. Moronis, A.P. Sakarellos, N. I. Kolliopoulos, "Determination of two layer earth structure parameters," XVII International conference on Electromagnetic Disturbances EMD 2007, pp. 10.1-10.5, Poland.
  5. IEEE Std 81-1983., IEEE guide for measuring earth resistivity, ground impedance, and earth surface potentials of a ground system, 1983.
  6. A. M. Dijkstra, B.H. Brown, A. D. Leathard, N. D. Harris, D. C. Barber, D. L. Endbrooke, "Review clinical applications of electrical impedance tomography," Journal of Medical Engineering and Technology, Vol. 17, no. 3, pp. 89-98, 1993. https://doi.org/10.3109/03091909309016213
  7. A. K. Khambampati, A. Rashid, U. Z. Ijaz, S. Kim, M. Soleimani, K. Y. Kim, "Unscented Kalman filter approach to track moving interfacial boundary in sedimentation process using three-dimensional electrical impedance tomography," Philosophical Transactions of Royal Society A, Vol. 367, no. 1900, pp. 3095-3120, July 2009. https://doi.org/10.1098/rsta.2009.0081
  8. D. H. Griffiths and R.D. Barker, "Two-dimensional resistivity imaging and modeling in areas of complex geology," Journal of applied geophysics, Vol. 29, no. 3-4, pp. 211-226, April 1993. https://doi.org/10.1016/0926-9851(93)90005-J
  9. K. A. Dines and R. J. Lytle, "Analysis of electrical conductivity imaging," Geophysics, Vol. 46, no. 7, pp. 1025-1036, July 1981. https://doi.org/10.1190/1.1441240
  10. W. Daily, A. Ramirez, R. Johnson, "Electrical impedance tomography of a perchloroethelyne release," Journal of Environmental and Engineering Geophysics, Vol. 2, no. 3, pp. 189-201, 1998.
  11. R. D. Barker, J. Moore, "The application of time-lapse electrical tomography in groundwater studies," Leading Edge, Vol. 17, no. 10, pp. 1454-1458, October 1998. https://doi.org/10.1190/1.1437878
  12. W. Daily and A. Ramirez, "Electrical resistivity tomography of vadose water movement," Water Resource Research, Vol. 28, no. 5, pp. 1429-1442, 1992. https://doi.org/10.1029/91WR03087
  13. B. Spies and R. Ellis, "Cross-borehole resistivity tomography of a pilot scale, insitu verification test," Geophysics, Vol. 60, no. 3, pp. 886-898, May-June 1995. https://doi.org/10.1190/1.1443824
  14. A. Casas, M. Himi, Y. Diaz, V. Pinto, X. Font, J.C. Tapias, "Assessing aquifer vulnerability to pollutants by electrical resistivity tomography (ERT) at a nitrate vulnerable zone in NE Spain," Environmental Geology, Vol. 54, no. 3, pp. 515-520, April 2008. https://doi.org/10.1007/s00254-007-0844-1
  15. L. N. Meads, L. R. Bently, C.A. Mendoza, "Application of electrical resistivity imaging to the development of a geological model for a proposed Edmonton landfill site," Canadian Geotechnical Journal, Vol. 40, no. 3, pp. 499-523, June 2003.
  16. A. L. Ramirez, D. A. Chesnut, W.D. Daily, "Using electrical resistance tomography to map subsurface temperatures," US patent No. 5346307, 1994.
  17. B. S. Kim, S. Kim, K. Y. Kim, "Development of Novel on-line Landweber Algorithm for Image Reconstruction in Electrical Impedance Tomography" Journal of the Institute of Electronics Engineers of Korea, Vol. 49, no. 9, pp. 293-299, September 2012.
  18. K. Y. Kim, B. S. Kim, S. I. Kang, M. C. Kim, J. H. Lee, Y. J. Lee, "Dynamical Electrical Impedance Tomography Based on the Regularized Extended Kalman Filter" Journal of the Institute of Electronics Engineers of Korea, Vol. 38, no. 5, pp. 23-32, September 2001.
  19. K. Y. Kim, B. S. Kim, M. C. Kim, Y. J. Lee, M. Vauhkonen, "Image reconstruction in time varying electrical impedance tomography based on the extended Kalman filter," Measurement Science Technology, Vol. 12, no. 8, pp. 1032-1039, April 2001. https://doi.org/10.1088/0957-0233/12/8/307
  20. A. K. Khambampati, A. Rashid, J. S. Lee, B. S. Kim, L. Dong, S. Kim, K. Y. Kim, "Estimation of void boundaries in flow field using expectation maximization algorithm," Chemical Engineering Science, Vol. 66, no. 3, pp. 355-374, February 2007. https://doi.org/10.1016/j.ces.2010.10.029
  21. M. Gasulla, R. Pallas-Arney, "Noniterative algorithms for electrical resistivity imaging applied to subsurface local anamolies," IEEE Sensors Journal, Vol. 5, no. 6, pp. 1421-1432, December 2005. https://doi.org/10.1109/JSEN.2005.858970
  22. P. J. Vauhkonen, M. Vauhkonen, T. Savolainen, J.P. Kaipio, "Three-dimensional electrical impedance tomography based on the complete electrode model," IEEE Transactions on Biomedical Engineering, Vol. 46, no. 9, pp. 1150-1160, September 1999. https://doi.org/10.1109/10.784147
  23. O. P. Tossavainen, M. Vauhkonen, V. Kolehmainen, "A three-dimensional shape estimation approach for tracking of phase interfaces in sedimentation processes using electrical impedance tomography," Measurement Science and Technology, Vol. 18, no. 5, pp. 1413-1424, March 2007. https://doi.org/10.1088/0957-0233/18/5/029
  24. O. P. Tossavainen, V. Kolehmainen, M. Vauhkonen, "Free surface and admittivity estimation in electrical impedance tomography," International Journal of Numerical Methods and Engineering, Vol. 66, no.13, pp. 1991-2013, June 2006. https://doi.org/10.1002/nme.1603
  25. M. Cheney, D. Isaacson, J.C. Newell, S. Simke, J. Goble, "NOSER: An algorithm for solving the inverse conductivity problem," International Journal of Imaging Systems and Technology, Vol. 2, no. 2, pp. 66-75, 1990. https://doi.org/10.1002/ima.1850020203

Cited by

  1. 제주토양 목업시스템을 사용한 접지저항 및 대지저항률 분석 vol.17, pp.8, 2016, https://doi.org/10.5762/kais.2016.17.8.536