• Title/Summary/Keyword: 안경렌즈코팅

Search Result 28, Processing Time 0.021 seconds

The Effect of Physical and Chemical Stimuli on Ophthalmic Lens Coatings (물리적, 화학적 자극이 안경 렌즈의 코팅에 미치는 영향)

  • Kim, So Ra;Kim, Ji Yoon;Kim, Ka Young;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.3
    • /
    • pp.237-245
    • /
    • 2011
  • Purpose: The present study was conducted to investigate whether certain repeated physical and/or chemical stimuli added on ophthalmic lenses might induce any changes of the functions of lens coatings. Methods: The changes in lens surface, light transmittance, foggy duration, durability of ophthalmic lenses were determined after the application of tearing-off with tape, rubbing with acetone, soaking in acetone or distilled water of ophthalmic lens (CR-39 material) as physical and/or chemical stimuli. Results: The change of ophthalmic lens surface was detected after soaking in acetone for longer than 30 minutes by observing the lens surface to figure out the functional change of hard coating. The ophthalmic lens soaked in distilled water for 180 minutes showed little functional change of anti-reflection coating as 1% by measuring light transmittance of lens. However, the function of anti-reflection coating was almost disappeared after the ophthalmic lens was soaked in acetone for 60 minutes. The foggy duration of ophthalmic lens soaked in acetone was increased by estimating foggy duration of lens. The lens coating was shown to be defected when the pre-damaged ophthalmic lenses were torn off with tape, rubbed with acetone and soaked in distilled water or acetone by observing pre-damaged lens surface to evaluate its durability. Conclusions: The careful management during ophthalmic lens dispensing or usual eyeglass wearing is needed since the change in ophthalmic lens coatings was shown by repeated physical and/or chemical stimuli.

A Study on the Anti-Reflection Coating Effects of Polymer Eyeglasses Lens (폴리머 안경렌즈의 반사방지 코팅효과 연구)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.216-221
    • /
    • 2017
  • Reducing optical reflection in the visible light range, in order to increase the share of transmitted light and avoid the formation of ghost images in imaging, is important for polymer lens applications. In this study, polymer lenses with refractive indices of n=1.56, 1.60, and 1.67 were fabricated by the injection-molding method with a polymer lens monomer, dibutyltin dichloride as the catalyst and an alkyl phosphoric ester as the release agent. To investigate their anti-reflection (AR) effects, various AR coating structures, viz. a multi-layer AR coating structure, tri-layer AR coating structure with a discrete approximation Gaussian gradient-index profile, and tri-layer AR coating structure with a quarter-wavelength approximation, were designed and coated on the polymer lens by an E-beam evaporation system. The optical properties of the polymer lenses were characterized by UV-visible spectrometry. The material properties of the thin films, refractive index and surface roughness, were analyzed by ellipsometry and AFM, respectively. The most effective AR coating structure of the polymer lens with low refractive index, n=1.56, was the both side coating of multi-layer AR coating structure. However, both side coating of the tri-layered discrete approximation Gaussian gradient-index profile AR coating structure gave comparable results to the both side coating of the multi-layer AR coating structure for the polymer lens with a high refractive index of n=1.67.

A Comparative Study on Test Methods for Ophthalmic Lens Coatings (안경렌즈 코팅의 평가 방법에 관한 비교 연구)

  • Yu, Dong-Sik;Moon, Byeong-Yeon;Ha, Jin-Wook
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.1
    • /
    • pp.7-15
    • /
    • 2006
  • We have surveyed test methods for ophthalmic lens coatings and compared the coating quality of lenses supplied by manufactures. Plastic ophthalmic lenses are produced in increasingly larger volumes. However, their softness have need resistant coatings absolutely essential in most cases. Coating lenses are typically evaluated in physical and chemical properties through random selection from produced lenses. No international standard test methods for ophthalmic lenses exist for issues such as adhesion, abrasion resistance, hardness, chemical and hot water resistance with exception of transmittance. We have learned that there is a great deal of confusion regarding the methods employed in the various tests for ophthalmic coating lenses. For this reason, test methods for ophthalmic lens coatings are needed making all of international or domestic standards available.

  • PDF

Analysis of Replacement Cycle by Eyeglasses Scratches in Daily Life (일상생활 속 안경렌즈 흠집에 의한 교체주기 분석)

  • Jung, Mi-A;Lee, Eun-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.447-451
    • /
    • 2019
  • This study were to investigate the scratches and replacement cycles of eyeglasses according to personal characteristics in daily life. The subjects were 58 people who voluntarily participated in this study. The replacement cycle of eyeglasses according to the contact of eyelashes with eyeglasses, type and the number of eyeglasses wiped on a day were analyzed. The statistical analysis were performed by X2 test and Fisher's exact test. The average replacement cycle of the eyeglasses were longer females than males. The eyeglasses replacement cycle were significantly shorter when the eyelashes contacted the eyeglasses and when the eyeglasses were wiped using a tissue or clothes other than the eyeglasses towel. The coating film of the eyeglasses may be damaged by the convergence effect such as eyelashes or minor carelessness in daily life, and this study will continue to follow up on this result.

Comparison of Properties of Polymer Based Glass Lenses by Chemical Etching Reaction (고분자 안경 렌즈의 재질별 화학적 식각 반응성 비교)

  • Lee, Junghwa;Noh, Hyeran
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.119-126
    • /
    • 2012
  • Purpose: To study changes in coating and lens materials after chemically etched different polymer based glass lenses in short-term and ambient condition using hydrofluoric acid. Methods: Vinyl ester polymer (Lens A) and thiourethane polymer (Lens B), both dyed in gray 70%, were etched in hydrofluoric acid solution for 5, 10, or 15 min. The mechanical properties, degrees of damages in hard coating, anti-reflection coating, and other coatings, rates of refractive index and light transmission of both polymer types were evaluated. Results: Rates of refractive index of both lens types were not changed significantly after chemical etching. However, anti-reflection coatings and hard coatings were removed and lens surfaces were damaged. As a results, UV light transmission of lenses increased and mechanical properties decreased. Chemical etching notably changed various properties of thiourethane polymer materials. Conclusions: Depending on types of polymer materials, chemical reactions by hydrofluoric acid were dissimilar. Thus, various properties of les materials were altered differently.

Assessment of UV Blocking Performance for Development of Converged Technologies of Vision Correcting Spectacle Lenses (시력교정용 안경렌즈의 융복합적 기술개발을 위한 UV차단 성능 평가)

  • Kim, Heung-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.93-98
    • /
    • 2018
  • This study was wanted to confirm ability for UV blocking according to its material. The lenses materials were Acryl, CR-39, NK-55, and MR-8. It was grouped: Group A consisting of anti-scratch hard coated lenses and anti-refractive multi coated lenses, Group B added UV blocking coating on the group A, and Group C consisting of only UV blocking lenses. The results measured UV transmittance, On the UV-A wavelength, Group A showed the UV transmittance of 7.726%, 0.043%, 0.007%, and 0.007% respectively. Group B showed 0.038%, 0.037%, 0.007%, and 0.007%, respectively. The UV-blocking performance of CR-39 has been greatly improved. Group C has shown the best UV blocking function; only 0.005% and 0.004% of UV transmittances.(1.60 and 1.67 index of refraction respectively). For the low power of lenses and sunglasses, the CR-39 lens is the most used. Therefore, to UV blocking from the lens, new materials or UV absorbers or UV coating technology and development of Converged Technologies are required.

Anti-reflection Coating using Optical Monitoring System (광학적 모니터링 장비를 이용한 안경렌즈의 무반사 코팅)

  • Jung, Boo-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.2
    • /
    • pp.159-165
    • /
    • 2011
  • Purpose: In this paper, the reliability and reproductivity of anti-reflection (AR) coating on ophthalmic lens using optical monitoring system (OMS) were investigated. Methods: The random error simulation and RunSheet performance in Essential Macleod software to confirm possibility of AR coating using OMS were performed. The coating process of 19 batches was carried out in order to perform reproductivity test of AR coating after simulation process. Results: As a result, the coating results of 19 batches had shown the excellent reproductivity of about 0.5% error. Conclusions: We confirmed the excellent reproductivity and reliability of AR coating on ophthalmic lens using optical monitoring system from our results.

Design and Fabrication of Sputter Coating System for Ophthalmic Lens (안경렌즈코팅용 소형 Sputter Coating System 설계 및 제작에 관한 연구)

  • Park, Moonchan;Jung, Boo Young;Kim, Eung Sun;Lee, Jong Geun;Joo, Kyung Bok;Moon, Hee Sung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.53-58
    • /
    • 2008
  • Purpose: To design and fabricate the small sputter coating system for the Ophthalmic lens. Methods: The design of sputter target was done using macleod program for AR coating and mirror coating of Ophthalmic lens with Si target and then the sputter system was fabricated. Results: The optimum condition of AR coating with Si target was [air|$SiO_2$(81.3)|$Si_3N_4$ (102)|$SiO_2$(19.21)|$Si_3N_4$(15.95)|$SiO_2$(102)|glass], for blue color mirror coating [air|$SiO_2$(56.61)|$Si_3N_4$(135.86)|$SiO_2$(67.64)|$Si_3N_4$(55.4)|$SiO_2$(53.53)|$Si_3N_4$(51.28)|glass], for green color coating [air|$SiO_2$(66.2)|$Si_3N_4$(22.76)|$SiO_2$(56.58)|$Si_3N_4$(140.35)|$SiO_2$(152.35)|$Si_3N_4$(70.16)|$SiO_2$(121.87)|glass], for gold color [air|$SiO_2$(83.59)|$Si_3N_4$(144.86)|$SiO_2$(11.82)|$Si_3N_4$(129.93)|$SiO_2$(90.01)|$Si_3N_4$(88.37)|glass]. Conclusions: In the fabrication of sputtering coating apparatus, Dual cathode with same Ti target were coated at the same time on both sides of Ophthalmic lens to lessen the time of coating on Ophthalmic Lens and save the cost of the lens. The distance of target-substrate of cathode was variable from 12.5 cm to 20 cm. Turbo pump was used to take the whole coating process about 15 min. instead of diffusion pump. The lens holder was made to coat 2 pairs lens every coating and was rotated to get the uniformity of thin film.

  • PDF

A Study on Electromagnetic Shield Coating of Ocular Lens (안경렌즈의 전자파 차폐 코팅에 관한 연구)

  • Kim, Ki-Hong;Park, Dae-Jin;Kim, In-Su
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.2
    • /
    • pp.115-119
    • /
    • 2006
  • Electromagnetic shielding, transparent ITO coating layers have deposited on ocular lens substrate by magnetron sputtering. We investigated the effect induced by the substrate temperature on coating layer. The characteristics of the coating layers were analyzed using surface profiler, four-point probe, XRD, spectrophotometer and Auger Electron spectroscopy. As substrate temperature became higher, carrier concentration was increased and transmittance in the visible region was increased, too.

  • PDF

A Study on the Method for the Local Transmittance Measurements of the Ocular Lens (안경 렌즈의 국소적 투과율 측정을 위한 방법에 관한 연구)

  • Park, Sang-Kook;Ri, Hyeong-Cheol;Youk, Do-Jin;Sung, Duk-Yong;Kang, Sung-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.4
    • /
    • pp.471-477
    • /
    • 2014
  • Purpose: We have analyzed the transmittance distribution of the ocular lens using local transmittance microscope to investigate the optical homogeneity of the lens. Methods: The transmittance of the laser which is focused on the surface of the ocular lens was measured by using the photo-detector and lock-in amplifier and analyzed. Multi-coated, uncoated, and progressive lenses were analyzed. Results: In the measurement of the progressive lens and a physical stimulated lens, local transmittance microscopy analysis showed a high degree of match with the measurement results through the optical microscope. In addition, the average value of the transmittance is reduced and the standard deviation was increased in the presence of optical defects. In unstimulated lens, there are a large impact on transmittance whether the anti-reflective coating is presence or absence in both the local transmittance microscopy and general transmittance analysis. Conclusions: The distribution of the transmittance measured by local transmission microscopy were changed when the various stimulus is applied to the lenses. These analyzes by local transmission microscopy can be utilized as a way to evaluate or determine the uniformity of the coating film or lens.