Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.398-400
/
2003
추천 시스템은 사용자의 아이템에 대한 선호도를 예측함으로써. 사용자에게 적합한 아이템을 추천한다. 이러한 추천 시스템은 희소성과 확장성의 문제를 안고 있다. 희소성이란 사용자의 선호도 예측의 토대가 되는 정보의 부족으로 인하여 추천 아이템의 범위가 제한되는 것이고, 확장성이란 사용자나 아이템의 수가 증가함에 따라 추천 시간이 증가하는 것이다. 본 논문에서는 아이템의 카테고리 정보를 이용한 다중 레벨 연관규칙을 선호도 예측에 적용하여 희소성과 확장성의 문제를 완화하고자 하였다. 연관규칙을 이용하여 선호도 예측을 위한 모델을 구축하여 확장성을 해결하고, 다중 레벨 연관규칙을 이용하여 추천 아이템의 범위를 확장할 수 있었다. 단일 레벨만을 사용한 방법과 비교한 결과, 다중 레벨을 사용한 방법이 좋은 성능을 보임을 확인할 수 있었다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.2
/
pp.379-386
/
2014
As the use of mobile device is increasing rapidly, the number of users is also increasing. However, most of the app stores are using recommendation of simple ranking method, so the accuracy of recommendation is lower. To recommend an item that is more appropriate to the user, this paper proposes a technique that reflects the weight of user information and recent preference degree of item. The proposed technique classifies the data set by categories and then derives a predicted value by applying the user's information weight to the collaborative filtering technique. To reflect the recent preference degree of item by categories, the average of items' rating values in the designated period is computed. An item is recommended by combining the two result values. The experiment result indicated that the proposed method has been more enhanced the accuracy, appropriacy, compared to item-based, user-based method.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2023.05a
/
pp.198-199
/
2023
자율운항선박 (Maritime Autonomous Surface Ship, MASS) 관련 기술이 전 세계적으로 활발히 개발되고 있는 가운데, 이러한 신기술을 검증하기 위해 국제표준 개발의 필요성이 증대하고 있다. 현재 ISO TC8(선박 및 해양기술) 분과에서 개발중이거나 제정된 표준 분석을 진행하였다. 3가지 카테고리로 분류하였을 때, 카테고리 3 - 세부 장비/어플리케이션에 대해 개발된 표준의 수가 카테고리 1 - 일반적인 가이드라인 및 기능적 요구사항에 대한 표준과 카테고리 1의 기능적 요구 사항을 만족하는 기술적 솔루션 레퍼런스인 기술적 솔루션 표준은 부족한 실정이다. 우선순위 도출을 통하여 카테고리 2 분야의 표준화 아이템을 도출하였고, 이를 기반으로 수립한 국제표준화 추진전략 및 계획을 소개할 예정이다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.19
no.3
/
pp.543-551
/
2015
As the use of internet and mobile devices became generalized, users utilizing search and recommendation in order to find the information they want in the midst of various websites have become common. In order to recommend more appropriate item for users, this paper proposes a recommendation technique that reflects the users' preference change following the flow of time by applying users' activity and time information. The proposed technique, after classifying the data in categories including the tag information that is considered at the time of choosing the items, only uses the data that users' preference change following the flow of time is reflected. For the users who prefer the corresponding category, the item that is extracted by applying tag information to collaboration filtering technique is recommended and for general users, items are recommended based on the ranking calculated by using the tag information. The proposed technique was experimented by using hetrec2011-movielens-2k data set. The experiment result indicated that the proposed technique has been more enhanced the accuracy, appropriacy, compared to item-based, user-based method.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.04a
/
pp.341-344
/
2004
웹 사용 마이닝(Web usage mining)은 웹 로그 파일(web log file)이나 웹 사용 데이터(Web usage data)에서 의미 있는 정보를 찾아내는 연구 분야이다. 웹 사용 마이닝에서 일반적으로 많이 사용하는 웹 로그 파일은 사용자들이 참조한 페이지의 단순한 리스트들이다. 따라서 단순히 웹 로그 파일만을 이용하는 방법만으로는 사용자가 참조했던 페이지의 내용을 반영하여 분석하는데에는 한계가 있다. 이러한 점을 개선하고자 본 논문에서는 페이지 위주가 아닌 웹 페이지가 포함하고 있는 내용(아이템)을 고려하는 새로운 퍼지 카테고리 기반의 웹 사용 마이닝 기법을 제시한다. 또한 사용자를 잘 파악하기 위해서 시간에 따라 관심의 변화를 파악하는 방법을 제시한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.88-90
/
2021
This paper introduces a method for extracting subtitles from lecture videos through a Korean morpheme analyzer and classifying video categories according to the extracted morpheme information. In some cases incorrect information is entered due to human error and reflected in the characteristics of the items, affecting the accuracy of the recommendation system. To prevent this, we generate a keyword table for each category using morpheme information extracted from pre-classified videos, and compare the similarity of morpheme in each category keyword table to classify categories of Lecture videos using the most similar keyword table. These human intervention reduction systems directly classify videos and aim to increase the accuracy of the system.
In the case of Domeggook B2B online shopping malls, it has a market share of over 70% with more than 2 million members and 800,000 items are sold per one day. However, since the same or similar items are stored and registered in different catalog entries, it is difficult for the buyer to search for items, and problems are also encountered in managing B2B large shopping malls. Therefore, in this study, we developed a catalog entry auto classification and recommendation system for products by using semi-supervised machine learning method based on previous huge shopping mall purchase information. Specifically, when the seller enters the item registration information in the form of natural language, KoNLPy morphological analysis process is performed, and the Naïve Bayes classification method is applied to implement a system that automatically recommends the most suitable catalog information for the article. As a result, it was possible to improve both the search speed and total sales of shopping mall by building accuracy in catalog entry efficiently.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.6
/
pp.1183-1190
/
2017
With the development of network and IT technology, people are searching and purchasing items they want, not bounded by places. Therefore, there are various studies on how to solve the scalability problem due to the rapidly increasing data in the recommendation system. In this paper, we propose an item-based collaborative filtering method using Tag weight and a recommendation technique using MapReduce method, which is a distributed parallel processing method. In order to improve speed and efficiency, the proposed method classifies items into categories in the preprocessing and groups according to the number of nodes. In each distributed node, data is processed by going through Map-Reduce step 4 times. In order to recommend better items to users, item tag weight is used in the similarity calculation. The experiment result indicated that the proposed method has been more enhanced the appropriacy compared to item-based method, and run efficiently on the large amounts of data.
Journal of the Korean Society for Library and Information Science
/
v.52
no.3
/
pp.289-334
/
2018
Even though information in many languages other than English is quickly increasing, English is still playing the role of the lingua franca and being accounted for the largest proportion on the web. Therefore, it is necessary to investigate the key features and differences between "information searching behavior using mother tongue as a search language" and "information searching behavior using English as a search language" of users who are non-mother tongue speakers of English to acquire more diverse and abundant information. This study conducted the experiment on the web searching which is applied in concurrent think-aloud method to examine the information searching behavior and the cognitive process in Korean search and English search through the twenty-four undergraduate students at a private university in South Korea. Based on the qualitative data, this study applied the frequency analysis to web search pattern under search language. As a result, it is active, aggressive and independent information searching behavior in Korean search, while information searching behavior in English search is passive, submissive and dependent. In Korean search, the main features are the query formulation by extract and combine the terms from various sources such as users, tasks and system, the search range adjustment in diverse level, the smooth filtering of the item selection in search engine results pages, the exploration and comparison of many items and the browsing of the overall contents of web pages. Whereas, in English search, the main features are the query formulation by the terms principally extracted from task, the search range adjustment in limitative level, the item selection by rely on the relevance between the items such as categories or links, the repetitive exploring on same item, the browsing of partial contents of web pages and the frequent use of language support tools like dictionaries or translators.
Journal of the Korea Society of Computer and Information
/
v.17
no.6
/
pp.163-172
/
2012
Collaborative filtering which is used explicit method in a existing recommedation system, can not only reflect exact attributes of item but also still has the problem of sparsity and scalability, though it has been practically used to improve these defects. This paper proposes the personalized recommendation system using RFM method and k-means clustering in u-commerce which is required by real time accessablity and agility. In this paper, using a implicit method which is is not used complicated query processing of the request and the response for rating, it is necessary for us to keep the analysis of RFM method and k-means clustering to be able to reflect attributes of the item in order to find the items with high purchasablity. The proposed makes the task of clustering to apply the variable of featured vector for the customer's information and calculating of the preference by each item category based on purchase history data, is able to recommend the items with efficiency. To estimate the performance, the proposed system is compared with existing system. As a result, it can be improved and evaluated according to the criteria of logicality through the experiment with dataset, collected in a cosmetic internet shopping mall.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.