• Title/Summary/Keyword: 아격자 모델

Search Result 22, Processing Time 0.025 seconds

High Resolution Rainfall Prediction Using Distributed Computing Technology (분산 컴퓨팅 기술을 이용한 고해상도 강수량 예측)

  • Yoon, JunWeon;Song, Ui-Sung
    • Journal of Digital Contents Society
    • /
    • v.17 no.1
    • /
    • pp.51-57
    • /
    • 2016
  • Distributed Computing attempts to harness a massive computing power using a great numbers of idle PCs resource distributed linked to the internet and processes a variety of applications parallel way such as bio, climate, cryptology, and astronomy. In this paper, we develop internet-distributed computing environment, so that we can analyze High Resolution Rainfall Prediction application in meteorological field. For analyze the rainfall forecast in Korea peninsula, we used QPM(Quantitative Precipitation Model) that is a mesoscale forecasting model. It needs to a lot of time to construct model which consisted of 27KM grid spacing, also the efficiency is degraded. On the other hand, based on this model it is easy to understand the distribution of rainfall calculated in accordance with the detailed topography of the area represented by a small terrain model reflecting the effects 3km radius of detail and terrain can improve the computational efficiency. The model is broken down into detailed area greater the required parallelism and increases the number of compute nodes that efficiency is increased linearly.. This model is distributed divided in two sub-grid distributed units of work to be done in the domain of $20{\times}20$ is networked computing resources.

Large-Eddy Simulation of a Turbulent Obstacle Flow at a High Reynolds Number (높은 레이놀즈수에서의 난류 장애물유동의 Large-Eddy-Simulation)

  • 양경수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1866-1872
    • /
    • 1994
  • Turbulent flow in a channel with a square rib periodically mounted on one wall is studied by large-eddy simulation(LES). An efficient 3D Navier-Stokes solver has been written for this geometry using a fractional step method and a multi-grid technique. The Reynolds number considered is 82, 000 based on the mean velocity above the obstacle height. Near-wall turbulence is approximated by a wall-layer model based on the turbulence intensity at the grid point nearest a solid wall. The results show a good qualitative agreement with experiments currently available for a single rib, indicating that LES can be a useful tool in simulating complex turbulent flows.

Large Eddy Simulation for a 2-D hydrofoil using VIC(Vortex-In-Cell) method (VIC 방법을 사용한 2차원 날개의 LES 해석)

  • Kim, M.S.;Kim, Y.C.;Suh, J.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.407-413
    • /
    • 2011
  • VIC (Vortex-In-Cell) method for viscous incompressible flow is presented to simulate the wake behind a modified NACA16 foil. With uniform rectangular grid, the velocity in field is calculated using streamfunction from vorticity field by solving the Poisson equation in which FFT(Fast Fourier Transform) is combined with 2nd order finite difference scheme. Here, LES(Large Eddy Simulation) with Smagorinsky model is applied for turbulence calculation. Effective viscosity is formulated using magnitude of strain tensor(or vorticity). Then the turbulent diffusion as well as viscous diffusion becomes particle strength exchange(PSE) with averaged eddy viscosity. The well-established panel method is combined to obtain the irrotational velocity and to apply the no-penetration boundary condition on the body panel. And wall diffusion is used for no-slip condition numerical results of turbulent stresses are compared with experimental results (Bourgoyne, 2003). Before comparing process, LES(Large Eddy Simulation) SGS(Subgrid scale) stress is transformed Reynolds averaged stress (Winckelmans, 2001).

  • PDF

Large eddy simulation of turbulent flows in a grooved channel (홈이 파진 평판 사이 난류유동의 대와동모사 (LES))

  • Yang, Gyeong-Su;Kim, Do-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.34-49
    • /
    • 1998
  • In this study, turbulent flows in a grooved channel are numerically investigated by Large Eddy Simulation (LES). Especially, a parametric study is carried out to study effects of length and depth of a groove on large-scale flow structures. For one test case, comparison of LES results with those of DNS reveals a good agreement even though the number of grid points of LES is only 6.5% of that of DNS. This confirms that LES is a suitable tool for a parametric study of turbulent flows. The subsequent parametric study using LES shows that the large-scale turbulent structures are significantly affected by the geometry of the groove. Especially, when the length of the groove is short such that the recirculation region occupies the entire groove, the turbulent flow in the groove becomes very weak in both mean and fluctuation quantities.

The Effect of Solvent Density on the Ethyl Acetoaceate Tautomerism (에틸 아세토아세테이트 토토머리즘 평형 상수의 밀도 의존성)

  • Park, YoonKook
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.291-295
    • /
    • 2006
  • The keto-enol tautomeric equilibrium constant, K, of ethyl acetoacetate in compressed and supercritical carbon dioxide was determined by using FT-IR (Fourier transform infrared) spectroscopy at three different temperatures. In order to investigate the effect of solvent density, the $CO_{2}$ pressure was systematically changed at a constant temperature. As the $CO_{2}$ density is increased, the amount of keto tautomer is increased, causing the K value to decrease. The modified lattice fluid hydrogen bonding theory has been applied to investigate the effect of density on the K.

LES on breakup and atomization of a liquid jet into cross turbulent flow in a rectangular duct (사각 덕트내 난류 횡단류 유동장에 분사되는 액체 제트의 분열과 미립화에 관한 LES 해석)

  • Yoo, Young-Lin;Han, Doo-Hee;Sung, Hong-Gye;Jeon, Hyuk-Soo;Park, Chul-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.290-297
    • /
    • 2016
  • A two-phase Large Eddy Simulation(LES) has been conducted to investigate breakup and atomization of a liquid jet in a cross turbulent flow in a rectangular duct. Gas-droplet two-phase flow was solved by a coupled Eulerian-Lagrangian method which tracks every individual particles. Effects of liquid breakup models, sub-grid scale models, and a order of spatial discretization was investigated. The penetration depth in cross flow was comparable with experimental data by varying breakup model and LES scheme. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

Numerical investigation on the flow noise reduction due to curved pipe based on wavenumber-frequency analysis in pressure relief valve pipe system (감압 밸브 배관 시스템 내 파수-주파수 분석을 통한 곡관의 유동소음 저감에 대한 수치적 연구)

  • Garam, Ku;Cheolung, Cheong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.705-712
    • /
    • 2022
  • A sudden pressure drop caused by the pressure relief valve acts as a strong noise source and propagates the compressible pressure fluctuation along the pipe wall, which becomes a excitation source of Acoustic Induced Vibration (AIV). Therefore, in this study, the numerical methodology is developed to evaluate the reduction effect of compressible pressure fluctuation due to curved pipe in the pressure relief valve system. To describe the acoustic wave caused by density fluctuation, unsteady compressible Large Eddy Simulation (LES) technique, which is high accuracy numerical method, Smagorinsky-Lilly subgrid scale model is applied. Wavenumber-frequency analysis is performed to extract the compressible pressure fluctuation component, which is propagated along the pipe, from the flow field, and it is based on the wall pressure on the upstream and downstream pipe from the curved pipe. It is shown that the plane wave and the 1st mode component in radial direction are dominant along the downstream direction, and the overall acoustic power was reduced by 3 dB through the curved pipe. From these results, the noise reduction effect caused by curved pipe is confirmed.

Comparison of the Flame Height of Pool Fire according to Combustion Models in the FDS (FDS의 연소모델에 따른 풀화재의 화염높이 비교)

  • Han, Ho-Sik;Hwang, Cheol-Hong;Oh, Chang Bo;Choi, Dongwon;Lee, Sangkyu
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.42-50
    • /
    • 2018
  • The effect of sub-grid turbulence and combustion models on the mean flame height in a heptane pool fire according to the Fire Dynamics Simulator (FDS) version (5 and 6) based on Large Eddy Simulation (LES) was examined. The heat release rate for the fire simulation was provided through experiments performed under identical conditions and the predictive performance of the mean flame height according to FDS version was evaluated by a comparison with the existing correlation. As a result, the Smagorinsky and Deardorff turbulence models applied to FDS 5 and 6, respectively, had no significant effects on the mean flow field, flame shape and flame height. On the other hand, the difference in pool fire characteristics including the mean flame height was due mainly to the difference in the mixture fraction and Eddy Dissipation Concept (EDC) combustion models applied to FDS 5 and 6, respectively. Finally, compared to FDS 6, FDS 5 provided the predictive result of a significantly longer flame height and more consistent mean flame height than the existing correlation.

한강유역의 3개보(강천보, 여주보, 이포보)건설로 인한 남한강 유역의 공사 전.후의 수리 분석

  • Lee, Gyeong-Yeong;Seong, Seu;Park, Sang-Cheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.441-441
    • /
    • 2011
  • 정부에서 기후변화로 인한 홍수와 가뭄, 수질개선 등 물 문제 해결을 위해 시행하고 있는 4대 강사업을 아직도 언론이나 환경단체, 대다수의 국민들이 보 건설로 인해 홍수의 위험성이 높아지고, 수질이 악화되어 생태계와 생명이 파괴된다고 오해하고 있다. 이런 오해를 불식시키기 위해 남한강유역의 보 건설 공사 전 후의 발생 가능한 수리변화 예측을 통하여 4대강사업에 따른 수리 수질 논란에 대비하고, 기존의 수위-유량 곡선식 및 홍수분석시스템 변화에 따른 개선을 통하여 보 건설 후 댐과 보의 운영시 각 보 지점의 수리분석을 통해 적절한 방류 규모, 시기를 결정하고 하류영향을 효과적으로 분석하는 등 환경변화에 대한 사전 대책마련을 위해 EFDC 모형을 구축하였다. 본 연구는 한강유역의 팔당댐을 기준으로 북한강 10km, 경안천 10km, 남한강 65km 구간의 공사 전 후 수위변화를 분석하기위해 남한강 유역의 2006년도부터 2010년까지의 여주, 이포, 양평 수위국의 최고수위 기간을 조사하여, 최고기간인 2006년 7월 15일부터 17일에 발생한 태풍 에위니아의 첨두유량(13,022CMS)을 사용하였고, 하천단면 측량자료는 2010년에 실시한 보 공사구간 횡단면도와 준설 후 계획 횡단면도와 과거 측량자료를 이용하였고, 총 3,794개의 격자망을 평균 $200m\times80m$ 간격으로 구성하여 3차원 수리/수질 모델 프로그램인 EFDC를 사용하여 수리모델링을 실시하여 보 건설 전 후의 수위변화를 모델링 하였다. 모델링 결과 남한강 상류인 강천보 지점의 수위 저감효과가 최대 2.0m로 가장 큰 효과를 보였으며, 상대적으로 남한강의 하류인 여주보 지점은 최대 1.5m, 이포보 지점은 상대적으로 작은 1.0m 정도의 수위 저감효과를 확인할 수 있었다. 그리고 이포보 하류의 양평수위국 지점과 북한강, 남한강, 경안천이 합류되는 팔당댐 상류 지점의 경우 모델링 결과 공사 전 후 수위 차이가 없는 것으로 보아 보 건설이 남한강 하류 지점에는 큰 영향을 끼치지 않는 것으로 판단된다. 이처럼 EFDC 모형을 이용하여 정밀 수리모형 검토를 통해 수위변화를 비교해 본 결과 지점별로 약간의 차이는 발생하지만 보 건설을 통하여 수위 저감효과가 발생하는 것으로 판단된다. 보다 정확한 검토를 위해 추후에는 남한강 상류의 강천수위국 상류지점의 검토와 남한강유역의 지류 유입량을 추가하여 모델링을 실시하면 보다 더 정밀한 분석이 가능할 것이라고 판단된다.

  • PDF

Large-Eddy Simulation of Turbulent Flows in a Planar Combustor (Planar-Jet형 연소기 내 난류유동의 LES)

  • Kim, Do-Hyeong;Yang, Kyung-Soo;Shin, Dong-Shin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1409-1416
    • /
    • 2000
  • In this study, turbulent flows in a planar combustor which has a square rib-type flame holder are numerically investigated by Large Eddy Simulation(LES). Firstly, the flow fields with or without jet injection downstream of the flame-holder are examined using uniform inlet velocity. Comparison of the present LES results with experimental one shows a good agreement. Secondly, to investigate mixing of oxidizer(air) and fuel injected behind the flame holder, the scalar-transport equation is introduced and solved. From the instantaneous flow and scalar fields, complex and intense mixing phenomena between fuel and jet are observed. It is shown that the ratio of jet to blocked air velocity is an important factor to determine the flow structure. Especially, when the ratio is large enough, the fuel jet penetrates the main vortices shed from the flame holder, resulting in significant changes in the flow and scalar fields.