• Title/Summary/Keyword: 쓰시마난류

Search Result 54, Processing Time 0.023 seconds

Relationship between the variation of the Tsushima Warm Current and current circulation in the East Sea (동해에서 potential vorticity와 해류순환과의 관계)

  • Lee Chung Il;Cho Kyu Dae;Yun Jong-Hwui
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.89-92
    • /
    • 2004
  • Potential vorticity is useful to illustrate mechanism and distribution pattern of current circulation the upper layer in the East Sea is divided into three part following like surface layer, Tsushima Warm Current(TWC) layer. Potential vorticity shows well the meandering of the TWC and polar front and circulation cell ill the northern part of polar front.

  • PDF

동해에서 쓰시마난류 분포역의 수온의 장ㆍ단기 변화

  • 이충일;조규대
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2002.10a
    • /
    • pp.135-136
    • /
    • 2002
  • 동해는 지중해적 성격을 지닌 북서태평양의 연해이면서도 깊이가 약 200m 이천에 불과한 말은 대(쓰시마)해협으로 인하여, 동해의 남서부 해역의 상층부를 통한 고온, 고염의 쓰시마 난류수가 유입되고 있다. 동해에서 일어나는 해양학적 현상들은 외양의 축소형태를 나태내고 있다. 즉, 동한 난류는 서안경계류의 특성을 나타내고 있고, 북쪽의 저온 저염수와 남쪽의 고온, 고염수와의 경계역에서는 극전선이 형성되고 있다(Choi et. al., 1995). (중략)

  • PDF

The Oceanic Condition of the Tsushima Warm Current Region in the Southern Part of the East Sea (Sea of Japan) in June, 1996.

  • Lee, Chung-Il;Cho, Kyu-Dae;Yun, Jong-Hwui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.9 no.2
    • /
    • pp.65-72
    • /
    • 2003
  • Oceanic conditions of the Tsushima Warm Current (TWC) region in the southern area of the East Sea (Japan Sea) are examined using data obtained from a CREAMS (Circulation Research if the East Asian Marginal Seas) cruise in June 1996. In 1990s, a lower temperature appears in 1996 and in this period, two branches of the TWC exist and the first branch of the TWC flows inshore of the Japanese coastal region compared to that in the other years, especially in the shallower water layer at depth less than about 200 m. The TWC cored with the higher salinity (>34.6 psu) is clearly observed over the continental shelf in the Japanese coastal region and offshore and identified by geostrophic calculation. Intrusion of the TWC into the East Sea through the Korea Strait (the Tsushima Strait) makes the density structure in the water column change and the water mass in the TWC region is unstable based on Brunt­Vaisala frequency.

  • PDF

Effects of Water Temperature Inversion on the Stratification Variation in October and December in the South Sea of Korea (한국 남해에서 10월과 12월의 수온역전현상이 성층변동에 미치는 영향)

  • Lee, Chung-Il;Koo, Do-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.3
    • /
    • pp.165-171
    • /
    • 2009
  • In order to illustrate the effects of water temperature inversion on the stratification variation in the South Sea of Korea, water temperature, salinity, and density measured in October and December 1999 by National Fisheries Research and Development Institute were reviewed. In October and December of 1999, temperature inversion occurred mainly between 25m and 75m, and in particular in depth of water, in December temperature inversion layer also was formed in the surface layer. In case of October and December, the Tsushima Warm Current (TWC), warm and saline water, was one of motors, and in December, influence of surface cold water was added Although northerly wind prevails in October and December, in October, expanding of the South Korean Coastal Waters (SKCW) towards offshore is not clear, but in December when wind speed is relatively greater than that in October and strength of the TWC become weak, the SKCW spreads towards offshore through the upper layer. Stratification variation was higher along the area where temperature inversion occurred.

  • PDF

Characteristics on spatial distributions of phytoplankton communities in relation to water masses in the western South Sea, Korea in early autumn 2021 (2021년 이른 가을 남해 서부 해역의 수괴 분포 및 식물플랑크톤 군집의 공간분포 특성)

  • Yang Ho Yoon
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.559-572
    • /
    • 2021
  • A survey was conducted to analyze water masses and spatial distributions of phytoplankton communities at 15 stations on the surface and chlorophyll a maximum layers (CML) in the western South Sea of Korea from September 8 to 9, 2021. As a result, water masses were classified into Coastal Waters (CW) with relatively low salinity, the Tsushima Warm Current (TWC) with high water temperature and high salinity, and mixed waters (MW) showing a mixture of these two water masses. Turbidity showed high concentration in both the surface and CML. The chlorophyll a concentration was as low as 0.90±0.43 ㎍ L-1 in the surface, more than 1.1 ㎍ L-1 in CW, around 1.0 ㎍ L-1 in MW, and less than 0.5 ㎍ L-1 in the TWC. CML was 1.64±0.54 ㎍ L-1. Regarding species composition of phytoplankton communities, there were 57 species in 31 genera(diatoms, 57.8%; dinoflagellates, 35.1%; and other phytoflagellates, 7.1%). The phytoplankton standing crop had 4.6±7.6 cells mL-1 in the surface, more than 30 cells mL-1 in the CW, 2-5 cells mL-1 in the MW, and less than 2 cells mL-1 in the TWC. CML was slightly higher than the surface with a variation of 5.7±8.4 cells mL-1. Dominant species were found to be Rhizosolenia flagilissima f. flagilissima, Skeletonema costatum-ls, and Nitzschia sp./ small size in the surface. For the CML Rh. flagilisima f. flagilissima showed a dominance of 12.0%. For the surface, the diversity variation was 2.36±0.40, which was high for TWC but low for MW. For CML, the diversity variation was 2.29±0.52, which was slightly lower than that of the surface. The dominance in the surface was 0.50±0.15, with a fluctuation range of more than 0.5 in MW and less than 0.5 in the TWC, which was different from the diversity. According to correlation analysis and principal component analysis (PCA), the presence of phytoplankton standing crops was high in CW but low in MW and TWC. That is, phytoplankton communities in early autumn were strongly affected by the expansion and mixing of water masses in western South Sea.

Temperature Inversion off Wasaka Bay in the East Sea, June of 1995 and 1996

  • Lee Chung-Il;Cho Kyu-Dae;Yun Jong-Hwui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.1 s.20
    • /
    • pp.55-59
    • /
    • 2004
  • Temperature inversion off Wasaka Bay in the East Sea was studied using data measured on a CREAMS cruise in June of 1995 and 1996. Temperature inversion occurred mainly at the upper layer of the thermocline at a depth of no more than 20 m and around the thermal front between the TWC and the coastal waters of Japan. At some stations. temperature inversion had an influence un density inversion, while, in some other stations, high salinity water prevented density inversion.

  • PDF

Influence of marine environment in main fishing ground and spanwning ground on the squid catch in the East Sea (오징어 산란장 및 주 어장의 해양환경이 동해의 오징어 어획량에 미치는 영향)

  • Lee, Chung-Il;Choi, Kwang-Ho
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.143-145
    • /
    • 2008
  • Squid catch in the East Sea has annual, 3-5 years and decadal periodicity. Position of main fishing ground depend on the pattern of the Tsushima Warm Current. Marine environment in spawning ground has close correlation with the variation of squid catch in the East Sea.

  • PDF

Distributions of Water Temperature and Salinity in the Korea Southern Coastal Water During Cochlodinium polykrikoides Blooms (C. polykrikoides 적조 발생시의 한국 남해안의 수온 및 염분 분포)

  • Lee, Moon-Ock;Choi, Jae-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.235-247
    • /
    • 2009
  • In order to elucidate the cause of Cochlodinium polykrikoides blooms in the Korea southern coastal water, we investigated observational data of water temperatures and salinities in summer and winter, obtained from the stoppage of ship by NFRDI (National Fisheries Research and Development Institute) as well as composite images by NOAA from 1995 to 2008. Cochlodinium polykrikoides blooms occurred when water temperature was approximately $25.0{\sim}26.0^{\circ}C$ and salinity was 31.00 psu on average in Narodo neighboring seas. Different thermohaline fronts were observed between the Korea southern coastal water and the open sea water in summer and winter, respectively. That is, in winter four fronts were observed between the Korea southern coastal water with low temperature and low salinity, intermediate water originated from Tsushima Warm Current, Tsushima Warm Current with high temperature and high salinity, and the China coastal water with low temperature and low salinity. In contrast, in summer two fronts were observed between the Korea southern coastal water with low temperature and high salinity, Tsushima Warm Current with high temperature and low salinity, and the China coastal water with high temperature and high salinity. These thermohaline fronts also proved to be formed by two water masses with a different physical property, in terms of T-S diagrams. Consequently, we noticed that C. polykrikoides blooms occurring in Narodo neighboring seas in summer had a close relationship with thermohaline fronts observed between the Korea southern coastal water and Tsushima Warm Current.

  • PDF

Investigation of Demersal Fisheries Resources of East China Sea - 3 . The Oceanographic Condition of the East China Sea in November , 1989 - (동지나해 저서어류의 자원조사 연구 - 3 . 1989년 11월 동지나해의 해황 -)

  • 김정창
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.2
    • /
    • pp.151-166
    • /
    • 1990
  • Using the data observed on the Oshoro-maru from November 4 to November 12, 1989 in the East China Sea, the oceanographic conditions were investigated. The results are as follows: The oceanographic condition of surface layer was divided into two regions. One was the Tsushima Current Waters and the other was the China Coastal Waters. The oceanic front was formed between above two waters. Tsushima Current Waters had high temperature ranging 22~24$^{\circ}C$, high salinity ranging 33.5~34.5$\textperthousand$ and low D.O less than 4.5ml/l. And China Coastal Waters had low temperature ranging 18~2$0^{\circ}C$, low salinity less than 23.0$\textperthousand$ and high D.O ranging 4.0~5.0ml/l. In the case of the bottom layer, Tsushima Current Waters and China Coastal Waters appeared the same as the surface layer. In addition, the Yellow Sea Bottom Cold Waters and the Southern Bottom Waters of East China Sea distributed together with two surface waters above. The was temperature ranging 15~19$^{\circ}C$, salinity 34.5$\textperthousand$ and low D.O ranging 2.0~3.5ml/l and that was temperature less than 1$0^{\circ}C$, salinity less than 33.3$\textperthousand$ and high D,O greater than 4.5ml/l. The waters of intermediate characteristics between China Coastal Waters and Tsushima Current Waters seem to be resulted from the mixing occurred between the above tow waters, and it had temperature of 20.5~22.$0^{\circ}C$, salinity of 32.3~33.3$\textperthousand$.

  • PDF