• Title/Summary/Keyword: 쌍곡선 신호

Search Result 17, Processing Time 0.024 seconds

Deep-learning-based GPR Data Interpretation Technique for Detecting Cavities in Urban Roads (도심지 도로 지하공동 탐지를 위한 딥러닝 기반 GPR 자료 해석 기법)

  • Byunghoon, Choi;Sukjoon, Pyun;Woochang, Choi;Churl-hyun, Jo;Jinsung, Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.189-200
    • /
    • 2022
  • Ground subsidence on urban roads is a social issue that can lead to human and property damages. Therefore, it is crucial to detect underground cavities in advance and repair them. Underground cavity detection is mainly performed using ground penetrating radar (GPR) surveys. This process is time-consuming, as a massive amount of GPR data needs to be interpreted, and the results vary depending on the skills and subjectivity of experts. To address these problems, researchers have studied automation and quantification techniques for GPR data interpretation, and recent studies have focused on deep learning-based interpretation techniques. In this study, we described a hyperbolic event detection process based on deep learning for GPR data interpretation. To demonstrate this process, we implemented a series of algorithms introduced in the preexisting research step by step. First, a deep learning-based YOLOv3 object detection model was applied to automatically detect hyperbolic signals. Subsequently, only hyperbolic signals were extracted using the column-connection clustering (C3) algorithm. Finally, the horizontal locations of the underground cavities were determined using regression analysis. The hyperbolic event detection using the YOLOv3 object detection technique achieved 84% precision and a recall score of 92% based on AP50. The predicted horizontal locations of the four underground cavities were approximately 0.12 ~ 0.36 m away from their actual locations. Thus, we confirmed that the existing deep learning-based interpretation technique is reliable with regard to detecting the hyperbolic patterns indicating underground cavities.

Implementation of Broadband Lightning Signal Detection and Signal Saving System (광대역 낙뢰탐지 및 신호저장 시스템 구현)

  • Lee, Sung-Ho;Sung, Tae-Kyung;Woo, Jung-Wook;Kwak, Ju-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1467-1468
    • /
    • 2006
  • 본 논문에서는 현재 운용되고 있는 낙뢰탐지 시스템들과는 다른 측위방식인 TDOA(Time Difference of Arrival)방법을 사용한 3차원 낙뢰 탐지 및 추적 시스템을 제안한다. TDOA방식은 낙뢰와 수신국사이의 도달시간을 측정하여 두 수신국간의 시간차가 일정한 쌍곡선을 얻고 이들 쌍곡선의 교점을 이용해 낙뢰의 위치를 결정하는 방법이다. 이 시스템을 이용하여 위치정확도가 수 미터인 3차원 낙뢰 방전 궤적을 얻을 수 있다. 시스템의 구현을 위해서 먼저 낙뢰의 신호를 저장해야 하는데, 광대역의 낙뢰신호를 저장하기 위해서는 고속의 디지타이저가 필요하다. 그러나 디지타이저와 프로세서간의 인터페이스의 한계로 연속적으로 이를 저장하는 것은 어려우며, 이러한 신호 저장의 문제점을 해결하기 위해서 낙뢰 신호 저장 시스템이 필요하다. 본 논문에서는 낙뢰의 메커니즘과 광대역 낙뢰신호 검출기법을 설명하고, 구현한 낙뢰 신호 저장 시스템을 소개한다.

  • PDF

Characterizing Multichannel Conduit Signal Properties Using a Ground Penetrating Radar: An FDTD Analysis Approach (FDTD 수치해석을 이용한 다중 관로에 대한 GPR 탐지 신호 특성 분석)

  • Ryu, Hee-Hwan;Bae, Joo-Yeol;Song, Ki-Il;Lee, Sang-Yun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.75-91
    • /
    • 2023
  • In this study, we explore the use of ground penetrating radar (GPR) for the nondestructive survey of subsurface conduits, focusing on the challenges posed by multichannel environments. A key concern is the shadow regions created by conduits, which significantly impact survey results. The shadow regions, which are influenced by conduit position and diameter, hinder signal propagation, thereby making detection within these regions challenging. Using finite-difference time-domain numerical analysis, we examined the characteristics of conduit signals, which typically manifest in hyperbolic patterns. Particularly, we investigated three conduit arrangements: horizontal, vertical, and diagonal. Automatic gain control was applied to amplify the signals, enabling the analysis of variations in shadow regions and signal characteristics for each arrangement. In the horizontal arrangement, the proximity of the two conduits resulted in the emergence of a new hyperbolic pattern between the existing conduits. In the vertical arrangement, the lower conduit could be detected using hyperbolic signals on either side, but the detection was challenging when the upper conduit diameter exceeded that of the lower conduit. In the diagonal arrangement, signal characteristics varied based on the position of shadow regions relative to the detection range of the equipment. Asymmetrical signal patterns were observed when the shadow regions fell within the detection range, whereas the signals of the two conduits were minimally impacted when the shadow regions were outside the detection range. This study provides vital insights into accurately detecting and characterizing subsurface multichannel conduits using GPR-a significant contribution to the field of subsurface exploration and management.

Jacket Matrix in Hyperbola (쌍곡선에서의 재킷 행렬)

  • Yang, Jae-Seung;Park, Ju-Yong;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.15-24
    • /
    • 2015
  • Jacket matrices which are defined to be $m{\times}m$ matrices $J^{\dagger}=[J_{ik}^{-1}]^T$ over a Galois field F with the property $JJ^{\dagger}=mI_m$, $J^{\dagger}$ is the transpose matrix of element-wise inverse of J, i.e., $J^{\dagger}=[J_{ik}^{-1}]^T$, were introduced by Lee in 1984 and are used for Digital Signal Processing and Coding theory. This paper presents some square matrices $A_2$ which can be eigenvalue decomposed by Jacket matrices. Specially, $A_2$ and its extension $A_3$ can be used for modifying the properties of hyperbola and hyperboloid, respectively. Specially, when the hyperbola has n times transformation, the final matrices $A_2^n$ can be easily calculated by employing the EVD[7] of matrices $A_2$. The ideas that we will develop here have applications in computer graphics and used in many important numerical algorithms.

A Study on the Minimization of the Number of Readers using Hybrid UWB Wireless Location Determination Technology (Hybrid UWB 무선측위기법을 이용한 라더기 개수 최소화 방법)

  • Choi, Jin-Wook;Hwang, Gu-Youn;Shin, Dong-Kyoo;Shin, Dong-Il
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06d
    • /
    • pp.180-184
    • /
    • 2010
  • UWB(Ultra Wide Band)는 기존의 스펙트럼에 비해 매우 넓은 대역에 걸쳐 낮은 전력으로 대용량의 정보를 전송가능하며 정확성면에서 탁월하며 신호 도달거리가 길다는 장점에서 실내 위치 측위기술로 가장 적당하다. 측위 기술 방법 중 각도를 측정하여 위치를 측정 하는 AoA방식과 도착 시간을 이용해서 위치를 측정하는 ToA방식, 그리고 두 리더기간의 시간의 차를 측정하여 리더기 간의 거리차가 일정함을 통해 얻는 쌍곡선의 교점을 이용하는 TDoA방식이 가장 대표적으로 사용되고 있다. 본 논문에서는 2개의 리더기에서 AOA방법을 통한 두 각의 교점과 ToA의 두 원들과의 교점, TDOA방식의 한 쌍의 쌍곡선의 교점을 이용하여 3개의 리더기가 아닌 2개의 리더기 사용으로 리더기의 개수를 최소화 하며 위치 추적의 정확도를 높이고자 한다. UWB의 특징과 실내 위치 결정 측위 방법 소개와 더불어 Hybrid를 통하여 얻을 수 있는 효과를 설명한다.

  • PDF

J2-bounding Surface Plasticity Model with Zero Elastic Region (탄성영역이 없는 J2-경계면 소성모델)

  • Shin, Hosung;Oh, Seboong;Kim, Jae-min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.469-476
    • /
    • 2023
  • Soil plasticity models for cyclic and dynamic loads are essential in non-linear numerical analysis of geotechnical structures. While a single yield surface model shows a linear behavior for cyclic loads, J2-bounding surface plasticity model with zero elastic region can effectively simulate a nonlinearity of the ground response with the same material properties. The radius of the yield surface inside the boundary surface converged to 0 to make the elastic region disappear, and plastic hardening modulus and dilatancy define plastic strain increment. This paper presents the stress-strain incremental equation of the developed model, and derives plastic hardening modulus for the hyperbolic model. The comparative analyses of the triaxial compression test and the shallow foundation under the cyclic load can show stable numerical convergence, consistency with the theoretical solution, and hysteresis behavior. In addition, plastic hardening modulus for the modified hyperbolic function is presented, and a methodology to estimate model variables conforming 1D equivalent linear model is proposed for numerical modeling of the multi-dimensional behavior of the ground.

A Study on Underwater Source Localization Using the Wideband Interference Pattern Matching (수중에서 광대역 간섭 패턴 정합을 이용한 음원의 위치 추정 연구)

  • Chun, Seung-Yong;Kim, Se-Young;Kim, Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.8
    • /
    • pp.415-425
    • /
    • 2007
  • This paper proposes a method of underwater source localization using the wideband interference patterns matching. By matching two interference patterns in the spectrogram, it is estimated a ratio of the range from source to sensor5, and then this ratio is applied to the Apollonius circle. The Apollonius circle is defined as the locus of all points whose distances from two fixed points are in a constant value so that it is possible to represent the locus of potential source location. The Apollonius circle alone, however still keeps the ambiguity against the correct source location. Therefore another equation is necessary to estimate the unique locus of the source location. By estimating time differences of signal arrivals between source and sensors, the hyperbola equation is used to get the cross point of the two equations, where the point being assumed to be the source position. Simulations are performed to get performances of the proposed algorithm. Also, comparisons with real sea experiment data are made to prove applicability of the algorithm in real environment. The results show that the proposed algorithm successfully estimates the source position within an error bound of 10%.

Pulse Position Determination using Adaptive Threshold Detector (Adaptive Threshold Detector를 이용한 펄스 위치 계산)

  • Chagn, Jae-won;Lee, Sang Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.2
    • /
    • pp.163-170
    • /
    • 2017
  • MLAT which is an independent cooperative surveillance system is applied to increase the positon resoultin of secondary survelliance radar. MLAT uses the hyperboic or hyperboloid position mesurement algorithm. Central processing unit of MLAT calculates target position using time difference of arrival (TDOA) which can be solved from time of arrival (TOA) information of each receivers (at least 4 receivers). To increase position resolution of MLAT which use TDOA, TOA which is transfer time from tranmitter to receiver shold be calculated with precision time resolution in receiver. This paper explained the MLAT system briefly and explained ATD which is one of means of calcuating pulse position. ATD is applied to solve the deviation of pulse position due to different amplitude of signals in mulitiple receivers. In this paper, to analysis the performance of ATD, the simulation result of LAS and CDS was compared with the simulation result of basic threshold method.

Measurement on Pipe Detectability of the GPR Consisting of Self-Designed Antenna (자체 설계한 안테나로 구성된 GPR의 파이프 검출능력에 관한 측정)

  • 현승엽;김상욱;김세윤
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.19-26
    • /
    • 1999
  • The detectability of pipes buried in dry sand is investigated by using the GPR with self-designed bow-tie antenna. The antennas are covered with shielding structures to reduce the direct-coupling between the transmitting and receiving antennas. The ringing, due to finite length of the antenna, is decreased by performing resistive termination at the ends of the antennas. It is shown that without additional signal processing, the presence of various buried targets can be found by discriminating hyperbolic pattern in B-scan data.

  • PDF

A Study on PDOP due to the Position Error of Acoustic Sensors in the 3D TDOA Positioning System (3차원 TDOA 위치 측정 시스템에서 음향 센서의 위치 오차에 따른 PDOP에 관한 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.199-205
    • /
    • 2015
  • Indoor positioning technology has been developed very actively for the smart phone handheld by most users. Especially, many TDOA positioning systems using acoustic signal have been studied, and it estimates the smart phone position by measuring the distance between the smart phone speaker and the microphones which is installed to receive the acoustic signal from the smart phone, and by calculating the hyperbolic equations. But there are always errors for the distance measurements, and furthermore the microphone installation error produces huge position estimation error. In this paper, the position estimation error due to the position error of acoustic sensor in the 3 dimensional TDOA positioning system, is analyzed by PDOP simulation and experiment.