• Title/Summary/Keyword: 심해용 무인잠수정

Search Result 10, Processing Time 0.019 seconds

Optimal Design of the Deep-sea Unmanned Vehicle Frame Design Sensitivity (심해용 무인잠수정 구조의 민감도해석에 의한 최적설계)

  • 이재환;허유정;정태환;이종무
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.3
    • /
    • pp.28-34
    • /
    • 2004
  • This paper presents the results of the structural analysis and optimal design of the ROV to be operated at 6000m depth in the ocean. This will be the first domestic deep-sea ROV operating with an AUV and a launcher equipped with robot arms and the current weight is about 3 ton. initial optimal dimension of the frame is determined based on the stress analysis using FEA code ANSYS and design sensitivity and optimization results. The current design is the initial design and there is a possibility to change the design according to the modification of material, equipments and array of structure.

Pressure Vessel Design and Structural Analysis of Unmanned Underwater Vehicle (심해용 무인잠수정의 내압용기 구조설계)

  • Joung, Tae-hwan;Lee, Jae-hwan;Nho, In-Sik;Lee, Pan-mook;Aoki Taro
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.140-146
    • /
    • 2004
  • This paper presents the structural analysis of the pressure vessels in the unmanned underwater vehicle (UUV) under developing at KORDi, which consists of a ROV, an AUV and a launcher at 6000 m depth in the ocean. Analytical, linear and nonlinear stress and buckling analysis of cylindrical pressure vessels using FEM (ANSYS) are performed to verify the safety of the current design.

A Study on the Design and Structural Analysis of the Unmanned Underwater Vehicle (심해 무인 잠수정 프레임의 설계 및 구조해석에 관한 연구)

  • JOUNG TAE-HWAN;NHO IN-SIK;CHUN IL-YONG;LEE JONG-Moo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.172-177
    • /
    • 2004
  • This paper presents the results of the structural analysis and optimal design of frames of the UUV(Unmanned Underwater vehicle) to be operated at 6000m depth in the ocean. The structure of the UUV system can be classified into two structure, Launcher ana ROV. Frame of the launcher will be made by Galvanized Steel which has high strength and corrosion-resistant but this material has high specific gravity for tile object to be weight in the water Similarly, ROV will be made by AI6061-T6, and frame of the ROV will be fix many instruments and syntactic buoyancy materials. Before fabrication of tile frame, we performed sensitivity analysis - change in weight due to $\pm1\%$ change in design variables, for easy choice by change of dimension of the frame.

  • PDF

System Design of a Deep-sea Unmanned Underwater Vehicle for Scientific Research (심해 과학조사용 무인잠수정의 시스템 설계)

  • Lee, Pan-Mook;Lee, Choong-Moo;JEON, Bong-Hwan;Hong, Seok-Won;Lim, Yong-Kon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.243-250
    • /
    • 2002
  • According to Ocean Korea 21, a basic plan established by the Ministry of Maritime Affairs and Fisheries (MOMAF) of Korea in May 2000, Korea Research Institute of Ships and Ocean Engineering (KRISO) proposed a program for the development of a deep-sea unmanned underwater vehicle (UUV) to explore deep sea for scientific purpose. KRISO has launched a project in May 2001 under the support of MOMAF. The deep-sea unmanned underwater vehicle will be applied to scientific researches in deep-sea as well as in shallow water. For operation of underwater vehicles in shallow water near the Korean Peninsula, a special design is required because of strong tidal current. In addition, MOMAF requires the vehicle to be designed for the purpose of long range survey, a long-term observation, and precise works in a specific area. Thus, KRISO has planned to design the system with the functional combination of both ROV and AUV. This paper presents the design of the deep-sea unmanned underwater vehicle.

  • PDF

Collapse Analysis for Deep Sea Pressure Vessel (심해용 압력용기에 대한 붕괴해석)

  • Shin, Jang-Ryong;Woo, Jong-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.82-97
    • /
    • 1999
  • A deep sea vehicle must be designed to ensure its safety under ultra-high pressure circumstances. If a pressure housing of a deepsea vehicle is collapsed by ultra-high pressure, the deepsea vehicle may be lost. The objective of this paper is to introduce a design collapse pressure for the deep sea pressure vessel which is composed of one cylinder and two hemispheres. Especially the collapse pressure of hemispherical shell with a hole at top is analyzed by a variational approach (weighted residual method). And for the purpose of design, the salty factor of collapse pressure is presented which is analyzed by interpolation method.

  • PDF

Estimation of the Hydrodynamic Coefficients for the Deep-sea UUV "HEMIRE" (심해용 무인 잠수정의 동역학 계수의 추정에 관한 연구)

  • Baek, Hyuk;Kim, Ki-Hun;Jun, Bong-Huan;Lee, Pan-Mook;Lim, Yong-Kon
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.97-105
    • /
    • 2008
  • This paper represents the experimental identification of a finite-dimensional dynamical plant model for the HEMIRE Remotely Operated Vehicle. The experiments were conducted during sea trials in the East Sea in October 2006 and peer testing by the South Sea Research Institute in January 2007. A least-squares method was employed to identify decoupled single degree-of-freedom plant dynamical models for the X, Y, Z and heading degree-of-freedom from experimental data. The performance of the identified plant dynamical model was evaluated by directly comparing simulations of the identified plant model to the experimentally observed motion data from the actual vehicle.

Development of a Deep-sea ROV, Hemire and its sea trial (심해 무인잠수정 해미래와 실해역 탐사)

  • Choi, H.T.;Lee, P.M.;Lee, C.M.;Jun, B.H.;Li, J.H.;Kim, K.H.;Ryu, S.C.
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.70-76
    • /
    • 2007
  • Hemire is a 6000m class deep-sea ROV, which is recently developed by Maritime & Ocean Engineering Research Institute (MOERI) of Korea Ocean Research & Development Institute (KORDI) for 6 years since 2001, sponsored by the Ministry of Maritime Affairs and Fisheries (MOMAF). Hemire dove upto 1,065m for the first east sea trial last April, and touched a 2,026m bottom of the east sea last September. Finally, last November, Hemire reached a 5,775m bottom of the pacific ocean successfully. This showed our own technologies for design and development of a deep-sea ROV as 4th nation in the world, and we made a great step forward for deep-sea exploration. This paper describes a general overview of a 6000m class deep-sea ROV, and briefly explains development procedure of Hemire and Henuvy. Finally, results of sea trial are summarized.

A Study on the Motion Analysis and Design Optimization of a Ducted Type AUV (Autonomous Underwater Vehicle) by Using CFD (Computational Fluid Dynamics) Analysis (CFD 해석을 이용한 덕트형 자율무인잠수정의 운동해석 및 설계 최적화에 관한 연구)

  • Joung, Tae-Hwan;Sammut, Karl;He, Fangpo;Lee, Seung-Keon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.48-53
    • /
    • 2009
  • Autonomous Underwater Vehicles (AUV's) provide an important means for collecting detailed scientific information from the ocean depths. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a design method that uses Computational Fluid Dynamics (CFD) to determine the hull resistance of an AUV under development. The CFD results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) of an AUV with a ducted propeller. This paper also discusses the optimization of the AUV hull profile to reduce the total resistance. This paper demonstrates that shape optimization in a conceptual design is possible by using a commercial CFD package. Optimum design work to minimize the drag force of an AUV was carried out, for a given object function and constraints.

Acoustic images of the submarine fan system of the northern Kumano Basin obtained during the experimental dives of the Deep Sea AUV URASHIMA (심해 자율무인잠수정 우라시마의 잠항시험에서 취득된 북 구마노 분지 해저 선상지 시스템의 음향 영상)

  • Kasaya, Takafumi;Kanamatsu, Toshiya;Sawa, Takao;Kinosita, Masataka;Tukioka, Satoshi;Yamamoto, Fujio
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.80-87
    • /
    • 2011
  • Autonomous underwater vehicles (AUVs) present the important advantage of being able to approach the seafloor more closely than surface vessel surveys can. To collect bathymetric data, bottom material information, and sub-surface images, multibeam echosounder, sidescan sonar (SSS) and subbottom profiler (SBP) equipment mounted on an AUV are powerful tools. The 3000m class AUV URASHIMA was developed by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). After finishing the engineering development and examination phase of a fuel-cell system used for the vehicle's power supply system, a renovated lithium-ion battery power system was installed in URASHIMA. The AUV was redeployed from its prior engineering tasks to scientific use. Various scientific instruments were loaded on the vehicle, and experimental dives for science-oriented missions conducted from 2006. During the experimental cruise of 2007, high-resolution acoustic images were obtained by SSS and SBP on the URASHIMA around the northern Kumano Basin off Japan's Kii Peninsula. The map of backscatter intensity data revealed many debris objects, and SBP images revealed the subsurface structure around the north-eastern end of our study area. These features suggest a structure related to the formation of the latest submarine fan. However, a strong reflection layer exists below ~20 ms below the seafloor in the south-western area, which we interpret as a denudation feature, now covered with younger surface sediments. We continue to improve the vehicle's performance, and expect that many fruitful results will be obtained using URASHIMA.