• Title/Summary/Keyword: 심층 지하수위

Search Result 10, Processing Time 0.027 seconds

경남 밀양지역에서 지구통계기법을 이용한 최적의 지하수위 분포도 작성

  • 김태형;정상용;강동환;이민희;권해우;유인걸;유영준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.222-226
    • /
    • 2003
  • 경남 밀양지역의 대수층별 지하수위 분포 특성을 파악하기 위하여 2002년 봄에 총 503개 지하수공을 대상으로 지하수위를 측정하였다. 조사된 자료는 수치가 낮은 지점들에 집중되어 있어 정규분포를 이루지 않으나, 대수변환 된 자료는 정규분포를 나타내었다. 표고와 천층 및 심층 지하수위의 회귀 분석을 실시한 결과, 모두 정(+)의 상관관계가 높은 것으로 나타났다. 베리오그램 분석이나 교차 베리오그램 분석 결과, 원시자료보다 대수변환 된 자료가 반베리오그램이나 교차 반베리오그램의 적합선에 더 잘 맞는 것으로 나타났다. 교차 타당성 분석 결과, 천층 지하수위에 대한 정규크리깅 및 코크리깅 모델링에서 원시 자료가 대수변환 된 자료보다 추정치에 더 가깝게 나타났고, 심층 지하수위에 대한 정규크리깅 및 코크리깅 모델링에서는 원시 자료보다 대수변환 된 자료가 추정치에 더 가깝게 나타났다. 정규크리깅이나 코크리깅을 이용하여 작성된 대수층별 지하수위 등고선도에서 등고선의 분포는 대체로 비슷하지만, 코크리깅에 의해 작성된 지하수위 등고선도가 정규크리깅에 의한 지하수위 등고선도보다 더 정밀한 것으로 나타났다. 이것은 원시 자료뿐만 아니라 대수변환 된 자료를 이용한 지하수위 등고선도에서도 같은 결과가 도출되었다.

  • PDF

Hydrological Environments of Groundwater in the Hadano Basin, Japan (진야분지 지하수의 수문환경)

  • 양해근
    • Journal of the Korean Geographical Society
    • /
    • v.34 no.1
    • /
    • pp.1-16
    • /
    • 1999
  • 본 연구는 도시화에 수반되는 지하수의 수문황경 변화를 조사하기 위해, 일본 하다노 분지를 대상으로 수문지질을 밝히고, 인위적인 요인에 의한 수문환경 변화와 수문특성을 종합적으로 분석하였다. 그 결과, 분지의 대수층은 퇴적환경에 의해 TP층을 경계로 신기 loam층과 고기 loam층으로 나눌 수 있으며, 전자를 천층지하수의 대수층, 후자를 심층지하수의 대수층으로 구분할 수 있다. 그리고 대수층의 기저기복은 지하수 수위의 공간적 차이를 유발하고, 지하수 유동계에 큰 영향을 미치고 있다. 분지의 심층지하수의 주요 공급원은 탄자와 산지의 지표수이고, 천층지하수는 분지 내에 내리는 빗물에 기인한 것으로 간주된다. 지하수의 과잉양수는 지하수 수지의 불균형을 유발함으로서 심층지하수가 매년 0.12~0.14m씩 저하되고 있다. 대체로 Cl-, NO3-농도는 심층지하수보다 천층지하수에서 높으며, 선정부에서 선단부로 갈수록 높아지는 것으로 보아 분지의 지하수 수질형성에 인위적인 요인이 크게 작용하고 있는 것으로 사료된다. 지하수의 화학적 조성은 대체로 Ca(HCO3-)2형에 속한다.

  • PDF

Possibility analysisof future droughts using long short term memory and standardized groundwater level index (LSTM과 SGI를 이용한 미래 가뭄 발생 가능성 분석)

  • Lim, Jae Deok;Yang, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.131-140
    • /
    • 2020
  • The purpose of this study is to analyze the possibility of future droughts by calculating the Standardized Groundwater level Index(SGI) after predicting groundwater level using Long Short Term Memory (LSTM) model. The groundwater level of the Kumho River basin was predicted for the next three years by using the LSTM model, and it was validated through RMSE after learning with observation data except the last three years. The temporal SGI was calculated by using the prediction data and the observation data. The calculated SGI was interpolated within the study area, and the spatial SGI was calculated as the average value for each catchment using the interpolated SGI. The possibility of spatio-temporal drought was analyzed using calculated spatio-temporal SGI. It is confirmed that there is a spatio-temporal difference in the possibility of drought. Through the improvement of deep learning model and diversification of validation method, it is expected to obtain more reliable prediction results and the expansion of study area can be used to respond to drought nationwide, and furthermore it can provide important information for future water resource management.

Performance Analysis and Implications of Culvert Drain Maintenance (암거배수 정비의 성과분석과 시사점)

  • Hyangmi Yi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.412-412
    • /
    • 2023
  • 정부는 2027년까지 식량자급률 55.4%를 달성하고, 채소·과실류 국내 공급 여력의 85% 수준을 유지하기 위한 적정 농지면적 150.0만ha가 필요하다고 추정하였다. 그리고 정부는 적정 면적 확보를 위해서 농지보전 목표가 포함된 중장기 기본계획을 수립할 예정이다. 이러한 식량자급률 달성과 채소 및 과실류 재배 면적 확보를 위해서는 논의 다각적인 활용 방안을 모색할 필요가 있다. 왜냐하면 최근 쌀 공급과잉 문제를 해결하기 위해 최근 '양곡관리법'이 정치적 이슈로 등장할 만큼 쌀 공급과잉 해소와 논 농지의 효율적인 활용에 대해 사회적 관심이 많다. 이러한 맥락에서 본 연구에서는 우리나라 최초로 논 배수 개선을 위해 지하암거가 설치된 경북상주시 공검면 일대를 대상으로 암거배수의 성과를 살펴보고 개선방안을 모색하였다. 이를 위해 본 연구에서는 지하암거 설치로 배수여건이 개선된 수혜농가 42명을 대상으로 심층면담을 실시하였다. 사례지역은 오태저수지를 기점으로 시작하는 공검소하천 양안에 넓게 위치하고 분지지형으로 하천보다 낮은 저지대로, 평상시·강수시 지하수위가 높아 습답이 형성되어 영농기계 사용이 어렵고, 일부지역의 경우 작물 파종, 수확을 하지 못하는 등 피해 발생하여 영농여건이 매우 불리한 지역이다. 이러한 배수불량을 개선하기 위해 수혜면적 55.6ha에 (지하)배수가 정비되었다. 이러한 배수 개선이 지역 영농에 미치는 효과는 다음과 같이 분석되었다. 첫째, 수혜구역 내 농가들은 배수불량으로 농기계 작업이 불편하고, 논의 습답을 제거하기 위해 해당 시설에 대한 필요성을 느끼고 있다. 또한 암거배수 시설로 인해 약 72% 농가들은 습답 개선의 효과가 있는 것으로 나타났다. 둘째, 전체 수혜농가의 약 72%는 암거시설로 인해 논의 습답이 개선된 것으로 나타났다. 특히, 암거시설로 인해 물빠짐이 개선되었고, 농기계 작업이 용이하게 되었다. 다만 사업 첫해에는 논을 파헤쳐 농기계가 빠지는 피해가 있었지만, 2차년도부터는 논이 정비되어 농기계 빠지는 피해는 없는 것으로 분석되었다. 셋째, 수혜 농가들이 느끼는 "습답 피해가 매우 있음"은 사업 시행 전 51.61%에서 사업 완료 후에는 4.17%로 급격히 감소하였다. 또한 "습답 피해가 전혀 없음"을 느끼는 농가는 사업 시행 전 3.23%에 불과했지만, 사업 완료 후에는 20.83%로 급증하였다.

  • PDF

Arrangement of Disposal Holes According to the Features of Groundwater Flow (지하수 유동 특성을 이용한 심층처분의 처분공 배치 방안)

  • Ko, Nak-Youl;Baik, Min-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.321-329
    • /
    • 2016
  • Based on the results of groundwater flow system modeling for a hypothetical deep geological repository site, quantitative and spatial distributions of groundwater flow rates at the positions of deposition holes, groundwater travel length and time from the positions to the surface environment were analyzed and used to suggest a method for determining locations of deposition holes. The hydraulic head values at the depth of the deposition holes and a particle tracking method were used to calculate the ground-water flow rates and groundwater travel length and time, respectively. From the results, an approach to designing a layout of deposition holes was suggested by selecting relatively favorable positions for maintaining performance of the disposal facility and screening some positions of deposition holes that did not comply with specific constraints for the groundwater flow rates, travel length and time. In addition, a method for determining a geometrical direction for extension of the disposal facility was discussed. Designing the layout of deposition holes with the information of groundwater flow at the disposal depth can contribute to secure performance and safety of the disposal facility.

Sulfur Cycle in the Rehabilitated Forest Catchment in Tanakami Mountain, Kansai District, Japan (일본 칸사이 지방 타나카미 산지의 황폐지 복구 산림유역 내 황(黃)순환에 관한 연구)

  • Kim, Su-Jin;Ohte, Nobuhito;Park, Jong-Kwan
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.4
    • /
    • pp.429-446
    • /
    • 2009
  • To understand the sulfur flux and cycle in the forest catchment, the hydrological processes and chemical variation of soil solution, groundwater and stream water were analyzed at the Matsuzawa catchment located in the Kiryu Experimental Basin, Shiga Prefecture, central Japan. Unsaturated soil layer at the upper slope of catchment was the source area of ${SO_4}^{2-}$, and deep soil layer and groundwater were the sink zone of ${SO_4}^{2-}$. The vertical distribution of ${SO_4}^{2-}$ concentrations in groundwater affected seasonal variation of ${SO_4}^{2-}$ concentrations in stream water, as groundwater level changed. It is reasonable to assume that each hydrological processes in the forest catchment play an important roles in the retention and discharge of ${SO_4}^{2-}$.

Determination Method of Suitable Mud Density While Drilling through Confined Aquifer and Its Application (피압대수층을 통과하는 대심도 시추 중 적정이수밀도 결정 방법 및 적용 사례)

  • Woon Sang Yoon;Yoosung Kim;Hyeongjin Jeon;Yoonho Song;Changhyun Lee
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.217-228
    • /
    • 2024
  • During deep drilling, confined aquifers can present various challenges such as the inability to remove cuttings, rapid groundwater influx, and mud loss. Particularly in flowing well conditions, it is essential to apply the suitable mud density since the aquifer can generates an overpressurized condition. This paper proposes a method for determining the suitable mud density while drilling (SMD) through confined aquifers using mud window analysis and applies it to a case study. The minimum mud density at each depth, which represents the lower limit of the mud window, is determined by the equivalent mud density pore pressure gradient (or by adding a trip margin) at that depth. The pore pressure gradient of a confined aquifer can be calculated using the piezometric level or well head pressure of the aquifer. As the borehole reaches the confined aquifer, there is a significant increase in pore pressure gradient, which gradually decreases with increasing depth. The SMD to prevent a kick can be determined as the maximum value among the minimum mud densities in the open hole section. After entering the confined aquifer, SMD is maintained as the minimum mud density at the top of the aquifer during the drilling of the open hole section. Additionally, appropriate casing installation can reduce the SMD, minimizing the risk of mud loss or invasion into the highly permeable aquifer.

Characteristics of a Reclaimed Tidal Soil for Effective Resalization at Saemangum and Youngsan-River

  • Chung, Doug-Young;Kim, Hyejin;Park, Misuk;Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1222-1229
    • /
    • 2012
  • The total area of a reclaimed tidal soil distributed on the south-west coast is approximately 156,600 ha, and the soil contains high contents of sand and silt as well as highly saline. Most of the reclaimed tidal soils are used as a paddy due to bad permeability and high groundwater table, resulting in easy accumulation of salts on the soil surface by capillary rise. Therefore, resalinization may occur because of rise of groundwater table after desalinization. The researches related to the reclaimed tidal soil mainly focused on desalinazation while most of the researches completed were limited to yields of crop based on desalinazation. pH of old reclaimed tidal soil is neutral or less than 7 while that of newly developed reclaimed tidal soils is greater than 7, that cause N-fertilizer to be volatile as ammonia. Thus, the physical and chemical properties should be investigated to be used as an arable upland instead of a paddy soil due to change in government policy. We need to develop measures to make soils grow crops normally by identifying problems related to reclaimed tidal soils.

Water Level and Quality Variations of CO2-rich Groundwater and Its Surrounding Geology in the Chungju Angseong Spa Area, South Korea: Considerations on Its Sustainability (충주 앙성지역 탄산천의 수위/수질 변동과 주변 지질 특성: 탄산천의 지속가능성에 대한 고찰)

  • Moon, Sang-Ho;Kee, Weon-Seo;Ko, Kyung-Seok;Lee, Cholwoo;Choi, Hanna;Koh, Dong-Chan
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.477-495
    • /
    • 2022
  • This study examined the sustainability of CO2-rich water by analyzing the water level and water quality change pattern with the amount of its use in Angseong area, Chungju. The origin and supply of CO2 component were discussed in consideration of 87Sr/86Sr ratio, occurrence of CO2-rich fluid inclusions in nearby W-Mo deposits and other surrounding geological characteristics. According to the data from 1986 to 2017, the depth of the water level of CO2-rich water was significantly lowered in the late period (2009-2015) than in the early period (1986-1992) of the development of hot spa wells, and the optimal yields for pumping tests also showed a tendency to gradual decrease. Concentrations of CO2 component also decreased continuously in the later stages compared to the early stages of development, but it has been stable since 2012. It is inferred that the geological environment related to forming W-Mo quartz vein deposits (0.5×1.5×several km) around the study area are largely involved in the origin and supply of CO2 component, and the supply of CO2 component is not infinitely supplied from deep current magma activity. Rather, since it is finitely supplied from a restricted subsurface region formed in the past geological period, it is necessary to efficiently control its use in order to maintain the sustainability of CO2-rich water in the study area.

Effects of the Development of Cracks into Deeper Zone on Productivity and Dryness of the Clayey Paddy Field (점토질 논 토양의 심층화가 토지생산성 및 유면건조에 미치는 영향)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.3
    • /
    • pp.3059-3088
    • /
    • 1973
  • The Object of research was laid on the dry paddy field which had a low level of underground water, rather than on a paddy field with a high level of underground water. In the treatment of the clay paddy field before transplanting we employed 3 kinds of methods; deep plowing, development of cracks by drying the surface of the field under which pipe drain was built. This study was to find which one, among these three methods, is the most effective to let roots extend to deep zone and increase the yield of rice and at the same time, for trafficability of large scale machinery which will be introduced to the harvest, in the light of the earth bearing capacity in relation with underground drainage. In the treatments of plots, 1) the kyong plot was plowed 39 days before transplanting and dried, 2) the kyun plot was plowed again 2days before transplanting after plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying, 3) the kyunam plot was plowed again 2 days before transplanting after setting the drainage pipe and at the same time plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying. Also each plot above had three different levels of soil depth, respectively; that is 15cm, 25cm, 35cm. The kyong plot with 15cm-depth was he control. The results obtained were as follows; 1. The kyunam plot showed a remarkably lager amount of water consumption by better underground drainage than the kyong and the kyun plot, and the kyong plot indicated a greater amount of water consumption than the kyun plot. Therefore the amount of available rainfall was decreased in the order of kyunam>kyong>kyun. The net duty of water decreased in the order of kyunam>kyong>kyun and its showed about 105cm in depth at the kyunam plot, about 70cm in depth at the kyong plot and about 45cm in depth at kyun plot, regardless of soil depth. 2. According to the tendency that the weight of the total root was effected by the maximum depth of the crack, it seemed that the root development was more affected by the depth of the crack than by only the crack itself. The weight of the total roots tended to increase as the depth of the crack got deeper and deeper, and the weight of the total roots was increased in the order of kyun<kyunam<kyong. 3. In the growing of the plant height, the difference did not appear at the beginning of growing(peak period of tillering) of any plot, But for the mid period of growing(ending period of tillering) to the period of young panicle formation, the deeper the depth of plot is, the more the growing goes down. On the contrary at the late period of growing, growth was more vigorous in the plot with deep depth than in the plot with shallow depth. Since the midperiod of growing, in the light of experimental treatment, the kyun plot was not better in growing than the other two plots and no remarkable defference was shown between the kyunam and the kyong plot, but the kyunam plot had the tendency of superiority in growing plant height. 4. As the depth of plot went deeper, the decreasing tendency was shown in the number of tillers through a whole period of growingi. When the above results were observed concering each plot of experimental treatment, the kyun plot was always smaller in the number of tiilers than the kyunam and the kvong plot, and the kyong plot was slightly larger than the kyunam plot in the number of tillers. 5. When each plot of the different experimental treatments was compared with the control plot(15-kyong), yield(weight of grains) was increased by 17% for the 35-kyong plot, by 10% for the 35-kyunam and yields for the other plots were less or nomore than the control plot. On the whole, as the depth of plot went deeper, yields for plots was increased in the order of kyong>kyunam>kyun. 1% of significance between the levels of depths and 5% of significance between the treatments were shown. 6. The depth of consumptive water which was more effective on the weight of grains is that of the last half period. When the depth of consumptive water was increased at the range of less than 2.7cm/day in the 15cm plot, 3.0cm/day in the 25cm plot and 3.3cm/day in the 35cm plot, the weight of grains was increased, and at the same time the weight of grains was increased as the depth of plot went deeper. The deeper plots was of advantage to the productivity at the same depth of consumptive water. 7. The increase in the weight of grains in propertion to the weighte of root showed a tendency to increase depending on the depth of plot at each plot of the same weight of roots. The weight of roots and grains together increasezd in the order of kyun>kyunam>kyong, considering each treatment of experimental plot. The weight of grains was in relation to the minimum water content ratio during the midperiod of surface drainage and the average earth temperature was mainly affected by the minimum water content ratio because it was relatively increased in proportion to the water content ratio(at less than 40%) 8. The weight ratio of straw to grain showed an increasing tendency at the plot of shallow depth and had a relation of an inversely exponental function to the weight of roots. At the same depth of plot except the 15cm plot, the weight ratio of straw to grain was increased in proportion to the depth of consumptive water. The weight of grains was increased as the depth of consumptive water was increased to some extent, but at the same time the weight of ratio of straw to grain was increased. 9. At a certain texture of soils the increase in the amount of the cracks depends on meteorological conditions, especially increase in amounts of pan evaporation. So if it rains during the progressing of field drying the cracks largely decrease. The amount of cracks of clay soil had relation of inversely exponental function to the water content ratio(at more than 25%). The maximum depth of crack kept generally a constant value at less than 30% of water content ratio. 10. The cone index showed the tendency that it was propertional to the amount of cracks within a certain limit but more or less inversely proportional over a certain limit. The water content ratio at the limit may be about 25%. 11. The increase in the cone index with the progressing of time after final surface drainage showed the tendency that it was proportional to the depth of consumptive water at the last half of growing period. Based on the same depth of if the cone index in the kyunam plot was much larger than in the other two plots and that in the kyong plot was much smaller than in the kyun plott, as long as the depth of plot was deeper, especially in the 35-kyong plot. 12. In the light of a situation where water content ratio of soil decreased and the cone index increased after final surface drainage the porogress of the field dryness was much more rapid in the kyunam plot than in the kyong plot and the kyun plot, especially slowest in the kyong plot. In the plot with deeper zone the progress was much slower. The progress requiring the value of the cone index, $2.5kg/cm^2$, that working machinary can move easily on the field changed with the time of final surface drainage and the amount of rainfall, but without nay rain it required, in the kyunam plot, about 44mm in total amount of pan evaporation and more than 50mm in the other two plots. Therefore the drying in the kyunam plot was generally more rapid in the kyunam plot was generally more rapid over 2days than in the kyun plot, and especially may be more rapid over 5days than in the 35-kyong plot.

  • PDF