• 제목/요약/키워드: 심층신경망 기계학습

Search Result 67, Processing Time 0.03 seconds

심층 신경망의 발전 과정과 이해

  • Lee, Jae-Seong
    • Information and Communications Magazine
    • /
    • v.33 no.10
    • /
    • pp.40-48
    • /
    • 2016
  • 본고에서는 최근 활발하게 연구되고 있는 심층 학습에 대하여 알아본다. 기계 학습 분야 중 하나인 심층 학습은 인공 신경망의 한 형태인 심층 신경망을 통해 구현된다. 심층 신경망은 기존 다층 신경망의 구조와 거의 유사한 학습 구조를 가지지만, 학습 과정에서 발생하는 부정확한 학습 문제를 해결함으로써 최근의 성공을 이끌어낼 수 있었다. 본고에서는 다층 신경망이 가지고 있던 문제점들을 심층 신경망에서 어떻게 극복하였는지 심층 신경망의 발전 과정을 통해 알아보고, 기계 학습의 기본개념을 바탕으로 이를 설명하여 비전문가들의 이해를 돕고자 하였다.

VCM based on Compression Neural Network for Multi-task (Multi-task 수행을 위한 압축 심층신경망 기반 VCM)

  • Lee, Haelim;Lee, Jooyoung;Cho, Seunghyun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.43-46
    • /
    • 2021
  • 최근 기계 임무수행에 사용되는 데이터양이 증가함에 따라 기계를 위한 효율적인 영상 압축방식의 필요성이 높아졌다. 기존의 비디오 코덱은 HVS (Human Visual System) 특성을 고려한 기술이기 때문에 부호화 과정에서 기계 임무수행에 필요하지 않은 정보를 효과적으로 제거할 수 없다. 반면 심층신경망 기반 압축네트워크의 경우, 원본 영상으로부터 기계 임무수행에 필수적인 데이터만을 추출하여 부호화 하도록 학습할 수 있는 장점이 있다. 본 논문에서는 압축 심층신경망과 기계 임무수행 네트워크로 구성되는 VCM (Video Coding for Machine) 프레임워크를 제안하고 학습에 의한 압축효율 향상을 검증한다. 이를 위해 압축 심층신경망을 객체탐지 임무수행 네트워크와 함께 학습시킨 결과, VVC (Versatile Video Coding) 대비 평균 61.16%의 BD-rate 감소가 확인되었다. 뿐만 아니라, 학습된 압축 심층신경망은 객체분할 임무수행에서도 VVC 대비 평균 58.43%의 BD-rate 감소를 보여 다중 기계 임무의 효율적 수행이 가능함을 확인할 수 있었다.

  • PDF

Deep Neural Net Machine Learning and Manufacturing (제조업의 심층신경망 기계학습(딥러닝))

  • CHO, Mann;Lee, Mingook
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.11-29
    • /
    • 2017
  • In recent years, the use of artificial intelligence technology such as deep neural net machine learning(deep learning) is becoming an effective and practical option in industrial manufacturing process. This study focuses on recent deep learning development environments and their applications in the manufacturing field.

이미지 기반 적대적 사례 생성 기술 연구 동향

  • O, Hui-Seok
    • Review of KIISC
    • /
    • v.30 no.6
    • /
    • pp.107-115
    • /
    • 2020
  • 다양한 응용분야에서 심층신경망 기반의 학습 모델이 앞 다투어 이용됨에 따라 인공지능의 설명 가능한 동작 원리 해석과, 추론이 갖는 불확실성에 관한 분석 또한 심도 있게 연구되고 있다. 이에 심층신경망 기반 기계학습 모델의 취약성이 수면 위로 드러났으며, 이러한 취약성을 이용하여 악의적으로 모델을 공격함으로써 오동작을 유도하고자 하는 시도가 다방면으로 이루어짐에 의해 학습 모델의 강건함 보장은 보안 분야에서의 쟁점으로 부각되고 있다. 모델 추론의 입력으로 이용되는 이미지에 교란값을 추가함으로써 심층신경망의 오분류를 발생시키는 임의의 변형된 이미지를 적대적 사례라 정의하며, 본 논문에서는 최근 인공지능 및 컴퓨터비전 분야에서 이루어지고 있는 이미지 기반 적대적 사례의 생성 기법에 대하여 논한다.

기계학습 모델 공격연구 동향: 심층신경망을 중심으로

  • Lee, Seulgi;Kim, KyeongHan;Kim, Byungik;Park, SoonTai
    • Review of KIISC
    • /
    • v.29 no.6
    • /
    • pp.67-74
    • /
    • 2019
  • 기계학습 알고리즘을 이용한 다양한 분야에서의 활용사례들이 우리 사회로 점차 확산되어가며, 기계학습을 통해 산출된 모델의 오동작을 유발할 수 있는 공격이 활발히 연구되고 있다. 특히, 한국에서는 딥러닝을 포함해 인공지능을 응용한 융합분야를 국가적 차원에서 추진하고 있으며, 만약 인공지능 모델 자체에서 발생하는 취약점을 보완하지 못하고 사전에 공격을 대비하지 않는다면, 뒤늦은 대응으로 인하여 관련 산업의 활성화가 지연될 수 있는 문제점이 발생할 수도 있다. 본 논문에서는 기계학습 모델에서, 특히 심층 신경망으로 구성되어 있는 모델에서 발생할 수 있는 공격들을 정의하고 연구 동향을 분석, 안전한 기계학습 모델 구성을 위해 필요한 시사점을 제시한다. 구체적으로, 가장 널리 알려진 적대적 사례(adversarial examples) 뿐 아니라, 프라이버시 침해를 유발하는 추론 공격 등이 어떻게 정의되는지 설명한다.

A Study on the Recognition Algorithm of Paprika in the Images using the Deep Neural Networks (심층 신경망을 이용한 영상 내 파프리카 인식 알고리즘 연구)

  • Hwa, Ji Ho;Lee, Bong Ki;Lee, Dae Weon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.142-142
    • /
    • 2017
  • 본 연구에서는 파프리카를 자동 수확하기 위한 시스템 개발의 일환으로 파프리카 재배환경에서 획득한 영상 내에 존재하는 파프리카 영역과 비 파프리카 영역의 RGB 정보를 입력으로 하는 인공신경망을 설계하고 학습을 수행하고자 하였다. 학습된 신경망을 이용하여 영상 내 파프리카 영역과 비 파프리카 영역의 구분이 가능 할 것으로 사료된다. 심층 신경망을 설계하기 위하여 MS Visual studio 2015의 C++, MFC와 Python 및 TensorFlow를 사용하였다. 먼저, 심층 신경망은 입력층과 출력층, 그리고 은닉층 8개를 가지는 형태로 입력 뉴런 3개, 출력 뉴런 4개, 각 은닉층의 뉴런은 5개로 설계하였다. 일반적으로 심층 신경망에서는 은닉층이 깊을수록 적은 입력으로 좋은 학습 결과를 기대 할 수 있지만 소요되는 시간이 길고 오버 피팅이 일어날 가능성이 높아진다. 따라서 본 연구에서는 소요시간을 줄이기 위하여 Xavier 초기화를 사용하였으며, 오버 피팅을 줄이기 위하여 ReLU 함수를 활성화 함수로 사용하였다. 파프리카 재배환경에서 획득한 영상에서 파프리카 영역과 비 파프리카 영역의 RGB 정보를 추출하여 학습의 입력으로 하고 기대 출력으로 붉은색 파프리카의 경우 [0 0 1], 노란색 파프리카의 경우 [0 1 0], 비 파프리카 영역의 경우 [1 0 0]으로 하는 형태로 3538개의 학습 셋을 만들었다. 학습 후 학습 결과를 평가하기 위하여 30개의 테스트 셋을 사용하였다. 학습 셋을 이용하여 학습을 수행하기 위해 학습률을 변경하면서 학습 결과를 확인하였다. 학습률을 0.01 이상으로 설정한 경우 학습이 이루어지지 않았다. 이는 학습률에 의해 결정되는 가중치의 변화량이 너무 커서 비용 함수의 결과가 0에 수렴하지 않고 발산하는 경향에 의한 것으로 사료된다. 학습률을 0.005, 0.001로 설정 한 경우 학습에 성공하였다. 학습률 0.005의 경우 학습 횟수 3146회, 소요시간 20.48초, 학습 정확도 99.77%, 테스트 정확도 100%였으며, 학습률 0.001의 경우 학습 횟수 38931회, 소요시간 181.39초, 학습 정확도 99.95%, 테스트 정확도 100%였다. 학습률이 작을수록 더욱 정확한 학습이 가능하지만 소요되는 시간이 크고 국부 최소점에 빠질 확률이 높았다. 학습률이 큰 경우 학습 소요 시간이 줄어드는 반면 학습 과정에서 비용이 발산하여 학습이 이루어지지 않는 경우가 많음을 확인 하였다.

  • PDF

Network intrusion detection Model through Hybrid Feature Selection and Data Balancing (Hybrid Feature Selection과 Data Balancing을 통한 네트워크 침입 탐지 모델)

  • Min, Byeongjun;Shin, Dongkyoo;Shin, Dongil
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.526-529
    • /
    • 2020
  • 최근 네트워크 환경에 대한 공격이 급속도로 고도화 및 지능화 되고 있기에, 기존의 시그니처 기반 침입탐지 시스템은 한계점이 명확해지고 있다. 이러한 문제를 해결하기 위해서 기계학습 기반의 침입 탐지 시스템에 대한 연구가 활발히 진행되고 있지만 기계학습을 침입 탐지에 이용하기 위해서는 두 가지 문제에 직면한다. 첫 번째는 실시간 탐지를 위한 학습과 연관된 중요 특징들을 선별하는 문제이며 두 번째는 학습에 사용되는 데이터의 불균형 문제로, 기계학습 알고리즘들은 데이터에 의존적이기에 이러한 문제는 치명적이다. 본 논문에서는 위 제시된 문제들을 해결하기 위해서 Hybrid Feature Selection과 Data Balancing을 통한 심층 신경망 기반의 네트워크 침입 탐지 모델을 제안한다. NSL-KDD 데이터 셋을 통해 학습을 진행하였으며, 평가를 위해 Accuracy, Precision, Recall, F1 Score 지표를 사용하였다. 본 논문에서 제안된 모델은 Random Forest 및 기본 심층 신경망 모델과 비교해 F1 Score를 기준으로 7~9%의 성능 향상을 이루었다.

1D CNN and Machine Learning Methods for Fall Detection (1D CNN과 기계 학습을 사용한 낙상 검출)

  • Kim, Inkyung;Kim, Daehee;Noh, Song;Lee, Jaekoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.85-90
    • /
    • 2021
  • In this paper, fall detection using individual wearable devices for older people is considered. To design a low-cost wearable device for reliable fall detection, we present a comprehensive analysis of two representative models. One is a machine learning model composed of a decision tree, random forest, and Support Vector Machine(SVM). The other is a deep learning model relying on a one-dimensional(1D) Convolutional Neural Network(CNN). By considering data segmentation, preprocessing, and feature extraction methods applied to the input data, we also evaluate the considered models' validity. Simulation results verify the efficacy of the deep learning model showing improved overall performance.

A Method of Activity Recognition in Small-Scale Activity Classification Problems via Optimization of Deep Neural Networks (심층 신경망의 최적화를 통한 소규모 행동 분류 문제의 행동 인식 방법)

  • Kim, Seunghyun;Kim, Yeon-Ho;Kim, Do-Yeon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.3
    • /
    • pp.155-160
    • /
    • 2017
  • Recently, Deep learning has been used successfully to solve many recognition problems. It has many advantages over existing machine learning methods that extract feature points through hand-crafting. Deep neural networks for human activity recognition split video data into frame images, and then classify activities by analysing the connectivity of frame images according to the time. But it is difficult to apply to actual problems which has small-scale activity classes. Because this situations has a problem of overfitting and insufficient training data. In this paper, we defined 5 type of small-scale human activities, and classified them. We construct video database using 700 video clips, and obtained a classifying accuracy of 74.00%.

Motion Response Estimation of Fishing Boats Using Deep Neural Networks (심층신경망을 이용한 어선의 운동응답 추정)

  • TaeWon Park;Dong-Woo Park;JangHoon Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.958-963
    • /
    • 2023
  • Lately, there has been increasing research on the prediction of motion performance using artificial intelligence for the safe design and operation of ships. However, compared to conventional ships, research on small fishing boats is insufficient. In this paper, we propose a model that estimates the motion response essential for calculating the motion performance of small fishing boats using a deep neural network. Hydrodynamic analysis was conducted on 15 small fishing boats, and a database was established. Environmental conditions and main particulars were applied as input data, and the response amplitude operators were utilized as the output data. The motion response predicted by the trained deep neural network model showed similar trends to the hydrodynamic analysis results. The results showed that the high-frequency motion responses were predicted well with a low error. Based on this study, we plan to extend existing research by incorporating the hull shape characteristics of fishing boats into a deep neural network model.