Acknowledgement
Supported by : 농림축산식품부
본 연구에서는 파프리카를 자동 수확하기 위한 시스템 개발의 일환으로 파프리카 재배환경에서 획득한 영상 내에 존재하는 파프리카 영역과 비 파프리카 영역의 RGB 정보를 입력으로 하는 인공신경망을 설계하고 학습을 수행하고자 하였다. 학습된 신경망을 이용하여 영상 내 파프리카 영역과 비 파프리카 영역의 구분이 가능 할 것으로 사료된다. 심층 신경망을 설계하기 위하여 MS Visual studio 2015의 C++, MFC와 Python 및 TensorFlow를 사용하였다. 먼저, 심층 신경망은 입력층과 출력층, 그리고 은닉층 8개를 가지는 형태로 입력 뉴런 3개, 출력 뉴런 4개, 각 은닉층의 뉴런은 5개로 설계하였다. 일반적으로 심층 신경망에서는 은닉층이 깊을수록 적은 입력으로 좋은 학습 결과를 기대 할 수 있지만 소요되는 시간이 길고 오버 피팅이 일어날 가능성이 높아진다. 따라서 본 연구에서는 소요시간을 줄이기 위하여 Xavier 초기화를 사용하였으며, 오버 피팅을 줄이기 위하여 ReLU 함수를 활성화 함수로 사용하였다. 파프리카 재배환경에서 획득한 영상에서 파프리카 영역과 비 파프리카 영역의 RGB 정보를 추출하여 학습의 입력으로 하고 기대 출력으로 붉은색 파프리카의 경우 [0 0 1], 노란색 파프리카의 경우 [0 1 0], 비 파프리카 영역의 경우 [1 0 0]으로 하는 형태로 3538개의 학습 셋을 만들었다. 학습 후 학습 결과를 평가하기 위하여 30개의 테스트 셋을 사용하였다. 학습 셋을 이용하여 학습을 수행하기 위해 학습률을 변경하면서 학습 결과를 확인하였다. 학습률을 0.01 이상으로 설정한 경우 학습이 이루어지지 않았다. 이는 학습률에 의해 결정되는 가중치의 변화량이 너무 커서 비용 함수의 결과가 0에 수렴하지 않고 발산하는 경향에 의한 것으로 사료된다. 학습률을 0.005, 0.001로 설정 한 경우 학습에 성공하였다. 학습률 0.005의 경우 학습 횟수 3146회, 소요시간 20.48초, 학습 정확도 99.77%, 테스트 정확도 100%였으며, 학습률 0.001의 경우 학습 횟수 38931회, 소요시간 181.39초, 학습 정확도 99.95%, 테스트 정확도 100%였다. 학습률이 작을수록 더욱 정확한 학습이 가능하지만 소요되는 시간이 크고 국부 최소점에 빠질 확률이 높았다. 학습률이 큰 경우 학습 소요 시간이 줄어드는 반면 학습 과정에서 비용이 발산하여 학습이 이루어지지 않는 경우가 많음을 확인 하였다.
Supported by : 농림축산식품부