다양한 응용분야에서 심층신경망 기반의 학습 모델이 앞 다투어 이용됨에 따라 인공지능의 설명 가능한 동작 원리 해석과, 추론이 갖는 불확실성에 관한 분석 또한 심도 있게 연구되고 있다. 이에 심층신경망 기반 기계학습 모델의 취약성이 수면 위로 드러났으며, 이러한 취약성을 이용하여 악의적으로 모델을 공격함으로써 오동작을 유도하고자 하는 시도가 다방면으로 이루어짐에 의해 학습 모델의 강건함 보장은 보안 분야에서의 쟁점으로 부각되고 있다. 모델 추론의 입력으로 이용되는 이미지에 교란값을 추가함으로써 심층신경망의 오분류를 발생시키는 임의의 변형된 이미지를 적대적 사례라 정의하며, 본 논문에서는 최근 인공지능 및 컴퓨터비전 분야에서 이루어지고 있는 이미지 기반 적대적 사례의 생성 기법에 대하여 논한다.
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.10
/
pp.537-547
/
2016
Deep Sea Water (DSW) has been exploited mainly by industry in a few countries including the U.S., Japan, Taiwan, and Korea. The development strategy of these states has pursued various goals based on their unique industrial environments and visions. Among them, Taiwan recently started their DSW industrialization, but has rapidly developed a variety of technologies and products. On the contrary, the Korean DSW industry has remained stagnant in the initial and growing stages for years, and now appears to need new plans and strategies for further development. The current literature lacks the strategy and policies required to foster the development of the domestic DSW industry. Relying upon the case of advanced foreign DSW industries, this study delineates the current status of the Korean DSW industry and discusses its future direction. Taiwan in particular has moved forward with policy development, financial and operation systems. This study attempts to provide a set of guidelines for the Korean DSW industry by focusing on the case of its Taiwanese equivalent. The Taiwanese strategical plans include premium drinkable water, government driven industrialization, diversification of DSW technologies and development of value-added products. This study provides a new direction for the DSW industry.
Recent rapid advances in computer hardware performance have led to relatively low computational costs, increasing the number of applications of machine-learning techniques to geophysical problems. In particular, deep-learning techniques are gaining in popularity as the number of cases successfully solving complex and nonlinear problems has gradually increased. In this paper, applications of seismic data denoising methods using deep-learning techniques are introduced and investigated. Depending on the type of attenuated noise, these studies are grouped into denoising applications of coherent noise, random noise, and the combination of these two types of noise. Then, we investigate the deep-learning techniques used to remove the corresponding noise. Unlike conventional methods used to attenuate seismic noise, deep neural networks, a typical deep-learning technique, learn the characteristics of the noise independently and then automatically optimize the parameters. Therefore, such methods are less sensitive to generalized problems than conventional methods and can reduce labor costs. Several studies have also demonstrated that deep-learning techniques perform well in terms of computational cost and denoising performance. Based on the results of the applications covered in this paper, the pros and cons of the deep-learning techniques used to remove seismic noise are analyzed and discussed.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.373-377
/
2018
판례는 재판에 대한 선례로, 법적 결정에 대한 근거가 되는 핵심 단서 중 하나이다. 본 연구에서는 채권회수를 예측하는 서비스 구축을 위한 단서를 추출하기 위해 채권 회수 판례를 수집하여 이를 분석한다. 먼저 채권 회수 판례에 대한 기초 분석을 위하여, 채권 회수 사례와 비회수 사례를 각 20건씩 수집하여 분석하였으며, 이후 대법원 및 법률 지식베이스의 채권 관련 판례 12,457건을 수집하고 채권 회수 여부에 따라 가공하였다. 채권 회수 사례와 비회수 사례를 분류하기 위한 판례 내의 패턴을 분석하여 레이블링하고, 이를 자동 분류할 수 있는 Bidirectional LSTM 기반 심층학습 모델을 구성하여 학습하였다. 채권 관련 판례 가공 기준에 따라 네 가지의 데이터 셋을 구성하였으며, 각 데이터셋을 8:2의 비율로 나누어 실험한 결과, 검증 데이터에 대하여 F1 점수 89.82%의 우수한 성능을 보였다.
Velocity model building is an essential procedure in seismic data processing. Conventional techniques, such as traveltime tomography or velocity analysis take longer computational time to predict a single velocity model and the quality of the inversion results is highly dependent on human expertise. Full-waveform inversions also depend on an accurate initial model. Recently, deep neural network techniques are gaining widespread acceptance due to an increase in their integration to solving complex and nonlinear problems. This study investigated cases of seismic velocity model building using deep neural network techniques by classifying items according to the neural networks used in each study. We also included cases of generating training synthetic velocity models. Deep neural networks automatically optimize model parameters by training neural networks from large amounts of data. Thus, less human interaction is involved in the quality of the inversion results compared to that of conventional techniques and the computational cost of predicting a single velocity model after training is negligible. Additionally, unlike full-waveform inversions, the initial velocity model is not required. Several studies have demonstrated that deep neural network techniques achieve outstanding performance not only in computational cost but also in inversion results. Based on the research results, we analyzed and discussed the characteristics of deep neural network techniques for building velocity models.
The purpose of this study is providing useful information for consumer-friendly house plan by investigating remodeling apartments according to the area type and size. In order to achieve this aim, case study was applied. The case study was conducted of five small, medium, and large size apartments through depth-interviews, actual survey, and questionnaires on the remodeling behavior, interior design, and interior atmosphere. The results of the study are as follows: Structural alterations were frequent in communal area, and then in private and household areas. Changing lighting fixtures was frequent in all area types, and especially, in communal areas installing extra decoration was frequently observed. Besides, alterations of doors and window frames were carried out in communal, private, housework and service areas by using wood, aluminum sashes, double-glazing, and paint coating. Finally, in housework areas the material and color of counters were changed into wooden and achromatic.
본 논문의 연구 목적은 여성 창업활동에 영향을 미치는 여성창업가의 특성 요인을 다면적, 실증적으로 연구를 실시하여 도출하고, 이를 통해 지속가능한 여성창업의 활성화를 위한 이론적·실무적 인사이트를 제시하여 경쟁력 있는 여성 창업기업의 발굴 및 육성에 대한 제언을 궁극적으로 함에 있다. 이를 위해 여성창업활성화를 여성창업가의 특성과 역량을 파악하고자 심층 인터뷰를 토대로 탐색연구를 실시하였다. 이에 본 연구에서는 8명의 여성창업가를 대상으로 한 심층 인터뷰를 통해서 창업태도(독립욕구, 개발욕구, 호의적여건), 창업진입률, 창업동기, 창업활동과 제약조건 등에 관한 주요 내용을 분석해 보았다. 연구의 독창성과 연구적 가치를 위해 여성 기업가, 창업가 8명을 심층인터뷰를 진행하였으며, 여성창업가의 보편적 특성을 객관적으로 확인코자 남성창업가 8명을 비교집단으로 심층인터뷰 진행하였다. 이를 통해 고성장, 고부가가치를 창출하는 벤처 창업생태계에서 수적 열세를 보이고 있는 여성의 창업활동 참여와 활성화를 위한 이론적, 실무적 인사이트를 제공하고자 한다.
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
/
v.17
no.2
/
pp.213-226
/
2019
Regulatory agency and licensee are preparing for the site restoration of Kori unit 1, the first commercial NPP in Korea, scheduled for 2031. Developing regulatory guidelines and strategies is essential for effective restoration work. Unfortunately, Korea does not have experience of site restoration of commercial NPPs. Therefore, it is important to review cases from experienced countries to establish a strategy and regulatory standards. The U.S. has had numerous soil remediation experiences using RESRAD and MARSSIM. However, formalized evaluation methodologies for subsurface soil have not yet been established in MARSSIM. This survey focused on subsurface soil remediation by reviewing the five decommissioned NPPs under regulation of the US NRC. Overall process of remediating a contaminated subsurface soil and groundwater was reviewed to identify considerations and lessons that could be applicable in Korea. In addition, an applied methodology for evaluation of contaminated subsurface soil and related major issues between regulatory agency and licensees were reviewed in detail to support establishment of remediation strategy for Kori unit 1.
Proceedings of the Korean Operations and Management Science Society Conference
/
2006.11a
/
pp.232-235
/
2006
본 연구는 규칙베이스와 사례베이스를 이용하여 은행의 내부감사 방법을 제시하고자 한다. 감사의 1단계에서는 규칙베이스를 이용하여 감사대상의 거래를 탐색하고 2단계에서는 사례베이스를 이용하여 감사대상의 거래를 심층 분석하여 감사결과를 도출한다. 규칙을 이용한 추론은 내부규정 및 가이드라인을 이용하여 추론하여 잠재적인 위험을 가지고 있는 거래를 발견하는 것 이 다. 사례베이스를 이용한 추론은 유사도를 개발하여 현재의 문제와 가장 유사한 사례를 탐색하여 감사를 하도록 한다. 본 연구에서 제시한 방법은 실제 은행 내부감사에 적용하여 분석하였다.
Proceedings of the Korean Society for Information Management Conference
/
2012.08a
/
pp.157-160
/
2012
본 연구는 국내 대학 기관레포지터리의 사례를 심층적으로 분석함으로써 경영자의 개입으로 통제 가능한 요인이 실제 기관레포지터리의 성공에 미치는 영향관계를 밝히는데 그 목적이 있다. 구체적으로 문헌연구를 통해 기관레포지터리의 성공요인을 도출하였으며, 국내 대학 기관레포지터리의 대표적인 사례를 분석하고, 실무자와 심층면담을 수행하였다. 그 결과 기관계획의 일환으로 재정지원을 확보하는 것은 기관레포지터리의 지속가능한 관리 체계 확립을 가능하게 하며, 특히 연구자의 업적평가, 연구성과 관리와 연계하여 기관레포지터리가 운영될 경우 연구자의 연구성과물을 확보할 수 있을 뿐만 아니라, 기관 내 연구자의 참여를 독려할 수 있음을 발견하였다. 따라서 기관레포지터리가 도서관만의 사업이 아닌, 기관 사업의 일환으로 운영되는 것은 기관레포지터리의 성공에 긍정적인 영향을 미치는 것으로 판단된다. 또한 이를 효과적으로 추진하기 위해서는 최고 경영층의 이해와 관심을 이끌어내기 위한 노력이 필요하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.