References
- Abma, R., and Claerbout, J., 1995, Lateral prediction for noise attenuation by t-x and f-x techniques, Geophysics, 60, 1887-1896, doi: 10.1190/1.1443920.
- Canales, L. L., 1984, Random noise reduction, 54th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 525-527, doi: 10.1190/1.1894168.
- Chen, Y., 2016, Dip-separated structural filtering using seislet transform and adaptive empirical mode decomposition based dip filter, Geophys. J. Int., 206(1), 457-469, doi: 10.1093/gji/ggw165.
- Chollet, F., 2018, Deep Learning with Python, Manning, 29-35.
- Deighan, A. J., and Watts, D. R., 1997, Ground-roll suppression using the wavelet transform, Geophysics, 62(6), 1896-1903, doi: 10.1190/1.1444290.
- Goodfellow, I., Bengio, Y., and Courville, A., 2016, Deep learning, MIT Press, 12-26.
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y., 2014, Generative adversarial nets, Adv. Neural. Inf. Process. Syst., 2672-2680.
- Greenspan, H., Ginneken, B. van, and Summers, R. M., 2016, Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique, IEEE Trans. Med. Imaging., 35(5), 1153-1159, doi: 10.1109/TMI.2016.2553401.
- He, K., Zhang, X., Ren, S., and Sun, J., 2016, Deep residual learning for image recognition, Proc. IEEE. Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 770-778, doi: 10.1109/CVPR.2016.90.
- Jia, Z., Lu, W., Zhang, M., and Miao, Y., 2018, Separating ground-roll from land seismic record via convolutional neural network, SEG 2018 Workshop: SEG Maximizing Asset Value Through Artificial Intelligence and Machine Learning, Beijing, China, Global Meeting Abstracts, 60-63, doi: 10.1190/AIML2018-16.1.
- Jin, Y., Wu, X., Chen, J., Han, Z., and Hu, W., 2018, Seismic data denoising by deep-residual networks, 88th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 4593-4597, doi: 10.1190/segam2018-2998619.1.
- Kim, Y., Hardisty, R., and Marfurt, K. J., 2019, Seismic random noise attenuation in f-x domain using complex-valued residual convolutional neural network, 89th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 2579-2583, doi: 10.1190/segam2019-3216543.1.
- Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., and Shi, W., 2017, Photo-realistic single image super-resolution using a generative adversarial network, Proc. IEEE. Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 4681-4690, doi: 10.1109/CVPR.2017.19.
- Li, H., Chen, D., and Chang, D., 2019, Ground-roll noise attenuation based on convolutional neural network, SEG 2019 Workshop: Fractured Reservoir & Unconventional Resources Forum: Prospects and Challenges in the Era of Big Data, Lanzhou, China, Global Meeting Abstracts, 69-73, doi: 10.1190/frur2019_18.1.
- Li, H., Yang, W., and Yong, X., 2018, Deep learning for groundroll noise attenuation, 88th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 1981-1985, doi: 10.1190/segam2018-2981295.1.
- Liu, D., Deng, Z., Wang, X., Wang, W., Shi, Z., Wang, C., and Chen, W., 2020, Must we have labels for denoising seismic data based on deep learning?, SEG 2019 Workshop: Mathematical Geophysics: Traditional vs Learning, Beijing, China, Global Meeting Abstracts, 31-35, doi: 10.1190/iwmg2019_08.1.
- Liu, D., Wang, W., Chen, W., Wang, X., Zhou, Y., and Shi, Z., 2018, Random-noise suppression in seismic data: What can deep learning do?, 88th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 2016-2020, doi: 10.1190/segam2018-2998114.1.
- Liu, J., and Marfurt, K. J., 2004, 3-d high resolution radon transforms applied to ground-roll suppression in orthogonal seismic surveys, 74th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2144-2147, doi: 10.1190/1.1851203.
- Oropeza, V., and Sacchi, M., 2011, Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis, Geophysics, 76(3), V25-V32, doi: 10.1190/1.3552706.
- Rowley, H. A., Baluja, S., and Kanade, T., 1998, Neural networkbased face detection, IEEE Trans. Pattern Anal. Mach. Intell., 20(1), 23-38, doi: 10.1109/34.655647.
- Si, X., and Yuan, Y., 2018, Random noise attenuation based on residual learning of deep convolutional neural network, 88th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 1986-1990, doi: 10.1190/segam2018-2985176.1.
- Si, X., Yuan, Y., Ping, F., Zheng, Y., and Feng, L., 2020, Ground roll attenuation based on conditional and cycle generative adversarial networks, SEG 2019 Workshop: Mathematical Geophysics: Traditional vs Learning, Beijing, China, Global Meeting Abstracts, 95-98, doi: 10.1190/iwmg2019_23.1.
- Trickett, S., 2008, F-xy cadzow noise suppression, 78th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2586-2590, doi: 10.1190/1.3063880.
- Wang, E., and Nealon, J., 2019, Applying machine learning to 3D seismic image denoising and enhancement, Interpret., 7(3), SE131-SE139, doi: 10.1190/INT-2018-0224.1.
- Xie, P., Boelle, J. L., and Puntous, H., 2018, Generativeadversarial network-based fast-noise removal on land-seismic data, 88th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 2171-2175, doi: 10.1190/segam2018-2995310.1.
- Xu, J., Mai, H., and Cao, S., 2019, Joint dictionary learning and super-resolution network on seismic noise removal, 89th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 2473-2477, doi: 10.1190/segam2019-3215320.1.
- Yarham, C., and Herrmann, F. J., 2008, Bayesian ground-roll separation by curvelet-domain sparsity promotion, 78th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2576-2580.
- Yilmaz, O., 2001, Seismic data analysis: processing, inversion and interpretation of seismic data, Vol. I, Soc. Expl. Geophys., 837-998.
- Yu, S., Ma, J., and Wang, W., 2019, Deep learning for denoising, Geophysics, 84(6), V333-V350, doi: 10.1190/geo2018-0668.1.
- Zhang, C., and Baan, M. van der, 2019, Microseismic and seismic noise attenuation by supervised deep learning with noisy natural images, 89th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 4485-4489, doi: 10.1190/segam2019-3213158.1.
- Zhang, F., Liu, D., Wang, X., Chen, W., and Wang, W., 2018, Random noise attenuation method for seismic data based on deep residual networks, SEG International Geophysical Conference, Beijing, China, Global Meeting Abstracts, 1774-1777, doi: 10.1190/IGC2018-435.
- Zhang, K., Zuo, W., Y., Meng, D., and Zhang, L., 2017, Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE Trans. Image Process., 26(7), 3142-3155, doi: 10.1109/TIP.2017.2662206.
- Zhang, Y., Lin, H., and Li, Y., 2018, Noise attenuation for seismic image using a deep-residual learning, 88th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 2176-2180, doi: 10.1190/segam2018-2997974.1.
- Zhao, X., Lu, P., Zhang, Y., Chen, J., and Li, X., 2019, Swellnoise attenuation: A deep learning approach, Lead. Edge, 38(12), 934-942, doi: 10.1190/tle38120934.1.
- Zheng, Y., Yuan, Y., and Si, X., 2020, The improved DnCNN for linear noise attenuation, SEG 2019 Workshop: Mathematical Geophysics: Traditional vs Learning, Beijing, China, Global Meeting Abstracts, 56-59, doi: 10.1190/iwmg2019_14.1.