• Title/Summary/Keyword: 실험 모드해석

Search Result 590, Processing Time 0.038 seconds

Numerical Study on Mode Transition in a Scramjet Engine (스크램제트 엔진에서의 모드 천이에 관한 수치해석 연구)

  • Ha, Jeong Ho;Das, Rajarshi;Ladeinde, Foluso;Kim, Tae Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.21-31
    • /
    • 2017
  • In the present study, theoretical and numerical analyses have been carried out to investigate the detailed flow characteristics during the mode transition. The theoretical analysis rearranged the knowledge of gasdynamics and the previous studies, and the numerical analysis has conducted to solve the 2D unsteady compressible Navier-Stokes equations with a fully implicit finite volume scheme. To validate the numerical analysis, the experiment was compared with it. The total temperature at the inlet of isolator and the hydrogen fuel equivalent ratio were changed to investigate their effects on the mode transition phenomenon. As the results, the numerical analysis reproduced well the experiment qualitatively, the increment in the hydrogen fuel equivalent ratio induced the scram-mode to ram-mode transition which is discontinuous with a non-allowable region, and the variation in the total temperature changed the boundary of the mode transition.

Modal Analysis of Violin and Gayageum (바이올린과 가야금의 모드해석)

  • 임종민
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.299-302
    • /
    • 1998
  • 가야금과 바이올린의 소리 발생 특성을 이해하기 위하여 모드해석을 수행하였다. 바이올린과 가야금은 크게 현과 몸체 그리고 이 둘을 연결하는 부분으로 구성되어 있다. 소리는 이들의 유기적인 관계로부터 발생된다. 실험을 통해 살펴본 결과, 저주파 대역에서 바이올린의 진동은 크게 앞, 뒷판의 진동, 몸체와 목 부분 사이의 비틀림 진동, 바이올린 전체가 하나의 보처럼 진동하는 현상으로 나누어 볼 수 있었다. 가야금 상판의 진동 형상은 약간 휘어진 형태를 가지며, 전체적으로 평판의 진동과 같은 모습을 보였다.

  • PDF

Transmission of Vibration Energy in Box-like Structures (격자형 구조물내의 진동에너지 전파)

  • 김현실;강현주;김재승
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.126-131
    • /
    • 1994
  • 본 연구에서는 굽힘파(bending wave)의 전달만 고려하였는데 실제로는 보 및 비틀림 모드도 존재하나 고주파수 대역에서는 굽힘모드가 지배적이며 소음의 발생도 굽힘모드에 의해 주로 발생하므로 보 및 비틀림모드의 생략이 큰 오차를 가져오지는 않는다. 테스트 모델에 대해 실험을 수행하여 결과를 비교하였다. 또한 구조물의 고주파수 진동소음 해석방법으로 널리 쓰이는 통계적 에너지 해석법(SEA)을 이용한 결과와 비교하였다.

  • PDF

Experimental Modal Analysis of Perforated Rectangular Plates Coupled with Fluid (유체로 연성된 다공 직사각평판의 실험적 모드 해석)

  • 유계형;이명규;정경훈;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.900-903
    • /
    • 2002
  • This study dealt with the experimental modal analysis of the perforated rectangular plate coupled with fluid. The natural frequencies of the perforated plate and solid plate in air were obtained by the analytical method based on the relation between the reference kinetic and maximum potential energy and compared with the experimental results. Good agreement between the results was found for the natural frequencies of the perforated plate in air. It was empirically found the natural frequencies of the perforated plate coupled with fluid. The transverse vibration modes, in-phase and out-of-phase, were observed alternately in the fluid-coupled system. Additionally, the effect of distance between perforated plate and solid plate on the fluid-coupled natural frequency was investigated.

  • PDF

Natural frequency control of machine room of refrigerator (냉장고 기계실 평판의 고유진동수 제어)

  • Kim, Hae-Seung;Yang, Jung-Min;Hwang, Sang-Jae;Lee, Moon-Seek;Kim, Ue-Kan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.224-224
    • /
    • 2011
  • 본 연구에서는 냉장고 압축기를 지지하고 있는 평판의 고유진동수를 제어하여 냉장고 전체에 전달되는 진동의 저감을 꾀하고자 한다. 평판의 과도한 진동의 원인을 분석하기 위해 먼저 실험 모드 해석을 수행하였다. 평판의 고유진동수를 효과적으로 제어하기 위해 평판의 고유진동수와 진동모드에 미치는 영향을 상용 구조 해석 프로그램인 ANSYS를 이용하여 검토하였다. 해석의 신뢰성은 먼저 수행한 실험 모드 해석 결과와의 비교를 통해 검증하였다. 이들 일련의 과정을 통해 냉장고 압축기를 지지하는 평판의 최적 형상 설계 방법 도출하였다.

  • PDF

Experimental Evidence and Analysis of a Mode Conversion of Guided Wave Using Magnetostrictive Strip Transducer (자기변형 스트립 탐촉자에 의한 유도초음파 모드 변환에 대한 실험적 검증 및 해석)

  • Cheong, Yong-Moo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.93-97
    • /
    • 2009
  • An advantage of a magnetostrictive strip transducer for a long-range guided wave inspection is that the wave patterns are relatively clear and simple when compared to a conventional piezoelectric ultrasonic transducer. Therefore, if we can characterize the evolution of defect signals, it could be a promising tool for a structural health monitoring of pipes for a long period of time as well as an identification of flaws. However, when evaluating a signal during a realistic field examination, it should be careful because of some spurious signals or false indications, such as signals due to a directionality, multiple reflections, mode conversion, geometrical reflections etc. Mode converted signals from a realistic piping mockup were acquired and analysed. We found mode conversions between a torsional guided wave T(0,1) mode and a flexural F(1,3) or longitudinal L(0,2) mode generated by a magnetostrictive strip transducer. Based on the experimental observations, an interpretation of the source of the mode conversion is discussed in a viewpoint of electromagnetic properties and structure of the strip transducer.

Experimental and Numerical Studies on Heat/Smoke Behavior due to a Fire on Underground Subway Platform (I) - Experimental Approach - (지하철 역사 승강장 화재발생시 열/연기 거동 분석을 위한 실험 및 수치 연구(I) - 실험적 접근 -)

  • Park, Won-Hee;Kim, Dong-Hyeon;Chang, Hee-Chul;Kim, Tae-Kuk
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.9-14
    • /
    • 2006
  • In this study boundary velocity which is one of the important boundary conditions for numerical simulation for subway station on fire are experimentally obtained. The tests were conducted according to its operating mode of the ventilation systems in the platform: smoke extraction ventilation mode in occurrence of fire and normal ventilation mode for air conditioning. Velocities are measured at various points on the platform. To examine smoke extraction and air supply capacity in the platform level, air velocities were checked on opening vents. Numerical analysis under normal ventilation mode without fire is conducted by using measured boundary conditions, and the numerical results are compared with the measured velocities on the platform.

Stress Analysis of the Blade Joint for a Small Wind Turbine (소형풍력터빈 블레이드 체결부의 응력해석)

  • Kim, Deok-Su;Jung, Won-Young;Jung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.117-124
    • /
    • 2012
  • In this paper, an analysis of the joint that transmits power from the blades to the generator is performed using the FEM (finite element method). The mode shapes and natural frequencies were extracted using experimental modal analysis in order to establish the FEM model. Then, the model was verified by comparing the mode shapes and natural frequencies to those obtained from the ANSYS modal analysis. Dynamic stress analysis was performed at the rated and limited wind speeds considering the wind load and gravity.

Modal Analysis of Wind Turbine Blade Using Optical-Fiber Bragg-Grating Sensors (광섬유 브레그격자 센서를 이용한 풍력발전기 날개의 모드 해석)

  • Kim, Chang-Hwan;Paek, In-Su;Yoo, Neung-Soo;Nam, Yoon-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.513-516
    • /
    • 2011
  • The dynamic behavior of a small wind-turbine blade was analyzed experimentally. Arrays of fiber Bragg-Grating (FBG) sensors attached along the blade were used to measure the strains of the blade surface. An impact test was performed to estimate the resonance frequencies of the fundamental and higher modes of the cantilever blade system developed for this study. The results were similar to the results for conventional strain gages. However, FBG sensors could sense modes that strain gauges could not sense. The strains obtained from the FBG sensor array were used to estimate displacement-mode shapes of the blade.

Performance Evaluation of Smart Accelerometers for Structural Health Monitoring (구조 건전성 감시를 위한 스마트 가속도계의 성능 평가)

  • Yi, Jin-Hak;O, Hye-Sun;Yun, Chung-Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.605-609
    • /
    • 2006
  • In this study, two kinds of smart accelerometers are investigated for the application of smart sensors to the structural health monitoring of infrastructures. Smart optical Fiber Bragg Grating (FBG) type and Micro-Electo-Mechanical System (MEMS) type accelerometers are selected for this study and the high sensitive ICP type accelerometer is used for the reference sensor. Small size shaking table tests were performed with 3-story shear building model using random input ground motions. The output only modal identification was carried out using stochastic subspace identification and the performances of sensors are compared in modal domain indirectly. The modal sensitivity method was applied to update the story stiffness of numerical model and the updated results were verified using the additional experiments for the same structure with additional mass.