• Title/Summary/Keyword: 실험적 모드해석

Search Result 386, Processing Time 0.023 seconds

Zero-Current Switching Two-Transformer Phase-Shifted Full-Bridge Converter using Voltage Ripple (전압 리플을 이용해 영전류 스위칭하는 두 개의 트랜스포머를 가지는 위상천이 풀-브릿지 컨버터)

  • Han, Sang-Kyoo;Moon, Gun-Woo;Youn, Myung-Joong;Yoon, Hyun-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.14-21
    • /
    • 2006
  • This paper presents a Zero-Current Switching(ZCS) two-transformer phase-shifted full-bridge(TTFB) converter using voltage ripple. The proposed converter provides Zero-Voltage Switching(ZVS) of leading leg switches and ZCS of lagging leg switches using voltage ripple. Especially, circulating current is reduced by ZCS operation and there are no additional components required for the soft switching of power switches. Furthermore, in case of light load, ZVS operation of lagging leg can be achieved. The operations, analysis and design consideration of proposed converter are presented. To verify the validity of the proposed converter, experimental results for a 410W (205[V], 2[A]) prototype are presented.

A Contact-less Power Supply for Photovoltaic Power Generation System (태양광 발전 시스템을 위한 무접점 전원장치)

  • Lee, Hyun-Kwan;Kong, Young-Su;Kim, Yoon-Ho;Lee, Gi-Sik;Kang, Sung-In;Chung, Bong-Geun;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.216-223
    • /
    • 2006
  • The high efficiency full-bridge LLC resonant converter using a contact-less transformer Is proposed for the photovoltaic power generation system. For the series resonance with a series capacitor, the LLC resonant converter utilizes the leakage inductance and magnetizing inductance of a contact-less transformer Unlike the conventional series resonant converter operated to the continuous resonant current at above resonance frequency, the proposed converter operates to the discontinuous resonant current at the narrow frequency control range below resonance frequency. Due to the discontinuous mode resonant current, the proposed converter can be achieved the zero voltage switching (ZVS) in the primary switches and the zero current switching (ZCS) in the secondary rectification diodes without my auxiliary circuit. In this paper, the experimental results of the proposed full-bridge LLC resonant converter using a contact-less transformer are verified on the simulation based on the theoretical analysis and the 150W experimental prototype.

High Efficiency Resonant Flyback Converter using a Single-Chip Microcontroller (싱글칩 마이크로컨트롤러를 이용한 고효율 공진형 플라이백 전력변환기)

  • Jeong, Gang-Youl
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.803-813
    • /
    • 2020
  • This paper presents a high efficiency resonant flyback converter using a single-chip microcontroller. The proposed converter primary performs the resonant switching by applying the asymmetrical pulse-width modulation (APWM) to the half-bridge power topology. And the converter secondary uses the diode flyback rectifier as its power topology and operates with the zero current switching (ZCS). Thus the proposed converter achieves high efficiency. The total structure of proposed converter is very simple because it uses a single-chip microcontroller and bootstrap circuit for its control and drive, respectively. First, this paper describes the converter operation according to each operation mode and shows its steady-state analysis. And the software control algorithm and drive circuits operating the proposed converter are explained. Then, the operation characteristics of proposed converter are shown through the experimental results of an implemented prototype based on each explanation.

Multimodality Image Registration and Fusion using Feature Extraction (특징 추출을 이용한 다중 영상 정합 및 융합 연구)

  • Woo, Sang-Keun;Kim, Jee-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.123-130
    • /
    • 2007
  • The aim of this study was to propose a fusion and registration method with heterogeneous small animal acquisition system in small animal in-vivo study. After an intravenous injection of $^{18}F$-FDG through tail vain and 60 min delay for uptake, mouse was placed on an acryl plate with fiducial markers that were made for fusion between small animal PET (microPET R4, Concorde Microsystems, Knoxville TN) and Discovery LS CT images. The acquired emission list-mode data was sorted to temporally framed sinograms and reconstructed using FORE rebining and 2D-OSEM algorithms without correction of attenuation and scatter. After PET imaging, CT images were acquired by mean of a clinical PET/CT with high-resolution mode. The microPET and CT images were fusion and co-registered using the fiducial markers and segmented lung region in both data sets to perform a point-based rigid co-registration. This method improves the quantitative accuracy and interpretation of the tracer.

  • PDF

A Study on Step Up-Down AC-DC Converter with DCM-ZVS of High Performance (고성능 DCM-ZVS 스텝 업-다운 AC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.335-342
    • /
    • 2012
  • This paper is studied on a new DCM-ZVS step up-down AC-DC converter of high performance, that is, high system efficiency and power factor correction (PFC). The switching devices in the proposed converter are operated by soft switching technique using a new quasi-resonant circuit, and are driven with discontinuous conduction mode (DCM) according to pulse width modulation (PWM). The quasi-resonant circuit uses a step up-down inductor and a loss-less snubber capacitor. The proposed converter with DCM also simplifies the requirement of control circuits and reduces the number of control components. The input AC current waveform in the proposed converter becomes a quasi-sinusoidal waveform proportional to the magnitude of input AC voltage under constant switching frequency. As a result, the proposed converter obtains low switching power loss and high efficiency, and its input power factor is nearly in unity. The validity of the analytical findings is confirmed by some computer simulation results and experimental results.

Design and Fabrication of Forward -3㏈ Directional Coupler Using Asymmetrical Coupled Lines with Mentalization Thickness (도체두께를 가진 비대칭 결합선로를 이용한 정방향 -3㏈ 방향성 결합기의 설계 및 제작)

  • 홍익표;윤남일;육종관
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8A
    • /
    • pp.626-632
    • /
    • 2003
  • In this paper, forward-wave -3㏈ directional coupler with finite-thickness conductor and asymmetrical coupled lines are designed and experimentally verified using mode-matching based design methodology. Most of studies published in the literatures about the coupled lines are mainly concentrated on the adjustment of coupling amount by changing various geometric configurations. The analysis results in this paper show that thicker metalization requires reduced coupler length in the forward-wave directional coupler composed of asymmetrical coupled lines. Several forward-wave directional -3 ㏈ couplers with finite metalization thickness composed of asymmetrical coupled microstrip lines have been designed in the 5 ㎓ based on proposed design method. The measured data show -4.05㏈∼-4.09㏈ coupling at center frequency which is very closed to design value. The tight coupling has been implemented with accurate design methodology which take mentalization thickness into account.

ZVS Phase Shift Full Bridge Converter Design with 2kW Output (2 kW 출력을 갖는 영전압 스위칭 위상 천이 풀 브리지 컨버터 설계)

  • Hwang, Kyu-Il;Kim, Il-Song
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.11
    • /
    • pp.523-530
    • /
    • 2018
  • It has been studied over the long time for the high efficiency and high power density of the power converter. It is possible to obtain higher power conversion efficiency and small volume by increasing switching frequency, however, the switching loss is also increased. The soft switching technique can overcome of the above deficiency. The design and analysis method for ZVS(Zero Voltage Switching) Phase Shifte Full bridge converter is presented in this paper. The power transfer depends on the phase difference between two legs of the power stage and the maximum power conversion efficiency is achieved by the optimum leakage inductance value. The waveform of the current and voltage of the operational mode is analysed and the corresponding switch status is plotted as on/off status. A ZVS full bridge converter for a communication rectifier with 2kW output power is implemented and its performance are verified through PSIM software simulation and experimental results.

A Study on Characteristic Analysis of Single-Stage High Frequency Resonant Inverter Link Type DC-DC Converter (단일 전력단 고주파 공진 인버터 링크형 DC-DC 컨버터의 특성해석에 관한 연구)

  • Won, Jae-Sun;Park, Jae-Wook;Seo, Cheol-Sik;Cho, Gyu-Pan;Jung, Do-Young;Kim, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.16-23
    • /
    • 2006
  • This paper presents a novel single-stage high frequency resonant inverter link type DC-DC converter using zero voltage switching with high power-factor. The proposed topology is integrated half-bridge boost rectifier as power factor corrector(PFC) and half-bridge high frequency resonant converter into a single-stage. The input stage of the half-bridge boost rectifier works in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that a boost converter makes the line current follow naturally the sinusoidal line voltage waveform. Simulation results have demonstrated the feasibility of the proposed high frequency resonant converter. Characteristics values based on characteristics analysis through circuit analysis is given as basis data in design procedure. Also, experimental results are presented to verify theoretical discussion. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, fluorescent lamp and DC-DC converter etc.

An Experimental Study on the Stability of Breakwater Head by the Wave Directional Effects (입사파의 방향성효과에 의한 방파제 제두부의 안정성에 관한 실험적 연구)

  • SOHN Byung-Kyu;KIM Hong-Jin;RYU Cheong-Ro
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.713-719
    • /
    • 2001
  • The aim of this study is to check the application criteria of the conventional techniques and clarify the effects of breaker depth, seabed conditions on the stability in relation to the effects of uncertainty of storm duration and directional irregular waves. The typical damage modes were divided by the direct wave force on the armor unit and by the local scouring around the toe of a breakwater head by the model experiments. The destruction modes are defined, and some criteria on the damage modes and scouring/deposition at the toe of a breakwater head in relating the wave-bottom-structural conditions can be checked using the multi-directonal irregular wave generator system. According to the results, it is emphasized that the 3-D effects on the stability should be analyzed in the design of multi-purpose/function coastal structures in consideration of the evaluation of spatial variation of damage modes and hydraulic characteristics as well as the wave distribution along the structures.

  • PDF

Analysis of Failure Behavior of FRP Rebar Reinforced Concrete Slab based on FRP Reinforced Ratio (FRP 보강근비에 따른 FRP 보강 콘크리트 슬래브의 파괴거동 분석)

  • Jang, Nag-Seop;Kim, Young-Hwan;Oh, Hong-Seob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.173-181
    • /
    • 2021
  • Reinforced concrete structures are exposed to various environments, resulting in reinforcement corrosion due to moisture and ions penetration. Reinforced concrete corrosion causes a decrease in the durability performance of reinforced concrete structures. One solution to mitigate such issues is using FRP rebars, which offer several advantages such as high tensile strength, corrosion resistance, and light-weight than conventional rebars, in reinforced concrete instead of conventional steel rebars. The FRP rebar used should be examined at the limit state because FRP reinforced concrete has linear behavior until its fracture and can generate excessive deflection due to the low elastic modulus. It should be considered while designing FRP reinforced concrete for flexure. In the ultimate limit state, the flexural strength of FRP reinforced concrete as per ACI 440.1R is significantly lower than the flexural strength by applying both the environmental reduction and strength reduction factors accounting for the material uncertainty of FRP rebar. Therefore, in this study, the experimental results were compared with the deflection of the proposed effective moment of inertia referring to the local and international standards. The experimental results of GFRP and BFRP reinforced concrete were compared with the flexural strength as determined by ACI 440.1R and Fib bulletin 40. The flexural strength obtained by the experimental results was more similar to that obtained by Fib bulletin 40 than ACI 440.1R. The flexural strength of ACI 440.1R was conservatively evaluated in the tension-controlled section.